The Dreams That Stuff is Made of
Page 8
The general data available indicate that the value of this central charge for different atoms is approximately proportional to their atomic weights, at any rate of atoms heavier than aluminium. It will be of great interest to examine experimentally whether such a simple relation holds also for the lighter atoms. In cases where the mass of the deflecting atom (for example, hydrogen, helium, lithium) is not very different from that of the α particle, the general theory of single scattering will require modification, for it is necessary to take into account the movements of the atom itself (see § 4).
It is of interest to note that Nagaokaap has mathematically considered the properties of the Saturnian atom which he supposed to consist of a central attracting mass surrounded by rings of rotating electrons. He showed that such a system was stable if the attracting force was large. From the point of view considered in his paper, the chance of large deflexion would practically be unaltered, whether the atom is considered to be disk or a sphere. It may be remarked that the approximate value found for the central charge of the atom of gold (100 e) is about that to be expected if the atom of gold consisted of 49 atoms of helium, each carrying a charge of 2 e. This may be only a coincidence, but it is certainly suggestive in view of the expulsion of helium atoms carrying two unit charges from radioactive matter.
The deductions from the theory so far considered are independent of the sign of the central charge, and it has not so far been found possible to obtain definite evidence to determine whether it be positive or negative. It may be possible to settle the question of sign by consideration of the difference of the laws of absorption of the β particles to be expected on the two hypothesis, for the effect of radiation in reducing the velocity of the β particle should be far more marked with a positive than with a negative center. If the central charge be positive, it is easily seen that a positively charged mass if released from the center of a heavy atom, would acquire a great velocity in moving through the electric field. It may be possible in this way to account for the high velocity of expulsion of α particles without supposing that they are initially in rapid motion within the atom.
Further consideration of the application of this theory to these and other questions will be reserved for a later paper, when the main deductions of the theory have been tested experimentally. Experiments in this direction are already in progress by Geiger and Marsden.
University of Manchester
April 1911
ON THE CONSTITUTION OF ATOMS AND MOLECULES
BY
NIELS BOHRaq
First published in
Philosophical Magazine Series 6, Volume 26 July 1913, p. 1–25
In order to explain the results of experiments on scattering of α rays by matter Prof. Rutherfordar has given a theory of the structure of atoms. According to this theory, the atoms consist of a positively charged nucleus surrounded by a system of electrons kept together by attractive forces from the nucleus; the total negative charge of the electrons is equal to the positive charge of the nucleus. Further, the nucleus is assumed to be the seat of the essential part of the mass of the atom, and to have linear dimensions exceedingly small compared with the linear dimensions of the whole atom. The number of electrons in an atom is deduced to be approximately equal to half the atomic weight. Great interest is to be attributed to this atom-model; for, as Rutherford has shown, the assumption of the existence of nuclei, as those in question, seems to be necessary in order to account for the results of the experiments on large angle scattering of the α raysas.
In an attempt to explain some of the properties of matter on the basis of this atom-model we meet however, with difficulties of a serious nature arising from the apparent instability of the system of electrons: difficulties purposely avoided in atom-models previously considered, for instance, in the one proposed by Sir J. J. Thomson.at According to the theory of the latter the atom consists of a sphere of uniform positive electrification, inside which the electrons move in circular orbits.
The principal difference between the atom-models proposed by Thomson and Rutherford consists in the circumstance the forces acting on the electrons in the atom-model of Thomson allow of certain configurations and motions of the electrons for which the system is in a stable equilibrium; such configurations, however, apparently do not exist for the second atom-model. The nature of the difference in question will perhaps be most clearly seen by noticing that among the quantities characterizing the first atom a quantity appears—the radius of the positive sphere—of dimensions of a length and of the same order of magnitude as the linear extension of the atom, while such a length does not appear among the quantities characterizing the second atom, viz. the charges and masses of the electrons and the positive nucleus; nor can it be determined solely by help of the latter quantities.
The way of considering a problem of this kind has, however, undergone essential alterations in recent years owing to the development of the theory of the energy radiation, and the direct affirmation of the new assumptions introduced in this theory, found by experiments on very different phenomena such as specific heats, photoelectric effect, Röntgen &c. The result of the discussion of these questions seems to be a general acknowledgment of the inadequacy of the classical electrodynamics in describing the behaviour of systems of atomic size.au Whatever the alteration in the laws of motion of the electrons may be, it seems necessary to introduce in the laws in question a quantity foreign to the classical electrodynamics, i.e. Planck’s constant, or as it often is called the elementary quantum of action. By the introduction of this quantity the question of the stable configuration of the electrons in the atoms is essentially changed as this constant is of such dimensions and magnitude that it, together with the mass and charge of the particles, can determine a length of the order of magnitude required.
This paper is an attempt to show that the application of the above ideas to Rutherford’s atom-model affords a basis for a theory of the constitution of atoms. It will further be shown that from this theory we are led to a theory of the constitution of molecules.
In the present first part of the paper the mechanism of the binding of electrons by a positive nucleus is discussed in relation to Planck’s theory. It will be shown that it is possible from the point of view taken to account in a simple way for the law of the line spectrum of hydrogen. Further, reasons are given for a principal hypothesis on which the considerations contained in the following parts are based.
I wish here to express my thanks to Prof. Rutherford his kind and encouraging interest in this work.
PART I: BINDING OF ELECTRONS BY POSITIVE NUCLEI
§ 1. GENERAL CONSIDERATIONS
The inadequacy of the classical electrodynamics in accounting for the properties of atoms from an atom-model as Rutherford’s, will appear very clearly if we consider a simple system consisting of a positively charged nucleus of very small dimensions and an electron describing closed orbits around it. For simplicity, let us assume that the mass of the electron is negligibly small in comparison with that of the nucleus, and further, that the velocity of the electron is small compared with that of light.
Let us at first assume that there is no energy radiation. In this case the electron will describe stationary elliptical orbits. The frequency of revolution ω and the major-axis of the orbit 2a will depend on the amount of energy w which must be transferred to the system in order to remove the electron to an infinitely great distance apart from the nucleus. Denoting the charge of the electron and of the nucleus by −e and E respectively and the mass of the electron by m we thus get
(1)
Further, it can easily be shown that the mean value of the kinetic energy of the electron taken for a whole revolution is equal to W. We see that if the value of W is not given there will be no values of ω and a characteristic for the system in question.
Let us now, however, take the effect of the energy radiation into account, calculated in the ordinary way from the acceleration of the electron. In this case t
he electron will no longer describe stationary orbits. W will continuously increase, and the electron will approach the nucleus describing orbits of smaller and smaller dimensions, and with greater and greater frequency; the electron on the average gaining in kinetic energy at the same time as the whole system loses energy. This process will go on until the dimensions of the orbit are of the same order of magnitude as the dimensions of the electron or those of the nucleus. A simple calculation shows that the energy radiated out during the process considered will be enormously great compared with that radiated out by ordinary molecular processes.
It is obvious that the behaviour of such a system will be very different from that of an atomic system occurring in nature. In the first place, the actual atoms in their permanent state seem to have absolutely fixed dimensions and frequencies. Further, if we consider any molecular process, the result seems always to be that after a certain amount of energy characteristic for the systems in question is radiated out, the systems will again settle down in a stable state of equilibrium, in which the distances apart of the particles are of the same order of magnitude as before the process.
Now the essential point in Planck’s theory of radiation is that the energy radiation from an atomic system does not take place in the continuous way assumed in the ordinary electrodynamics, but that it, on the contrary, takes place in distinctly separated emissions, the amount of energy radiated out from an atomic vibrator of frequency ν in a single emission being equal to τhν where τ is an entire number, and h is a universal constantav.
Returning to the simple case of an electron and a positive nucleus considered above, let us assume that the electron at the beginning of the interaction with the nucleus was at a great distance apart from the nucleus, and bad no sensible velocity relative to the latter. Let us further assume that the electron after the interaction has taken place has settled down in a stationary orbit around the nucleus. We shall, for reasons referred to later, assume that the orbit in question is circular; this assumption will, however, make no alteration in the calculations for systems containing only a single electron.
Let us now assume that, during the binding of the electron, a homogeneous radiation is emitted of a frequency ν, equal to half the frequency of revolution of the electron in its final orbit; then, from Planck’s theory, we might expect, that the amount of energy emitted by the process considered is equal to τhν, where h is Planck’s constant and τ an entire number. If we assume that the radiation emitted is homogeneous, the second assumption concerning the frequency of the radiation suggests itself, since the frequency of revolution of the electron at the beginning of the emission is 0. The question, however, of the rigorous validity of both assumptions, and also of the application made of Planck’s* theory will be more closely discussed in § 3.
Putting
(2)
we can by help of the formula (1)
If in these expressions we give τ different values we get -a series of values for W, ω, and a corresponding to a series of configurations of the system. According to the above considerations, we are led to assume that these configurations will correspond to states of the system in which there is no radiation of energy states which consequently will be stationary as long as the system is not disturbed from outside. We see that the value of W′ is greatest if τ has its smallest value 1. This case will therefore correspond to the most stable state of the system, i.e. will correspond to the binding of the electron for the breaking up of which the greatest amount of energy is required.
Putting in the above expressions τ = l and E = e, and introducing the experimental valuese = 4.7 × 10−10, e/m = 5.31 × 1017, h = 6.5 × 10 −27
we get2a = 1.1 × 10 −8 cm., ω = 6.2 × 1015 sec −1, W/e = 13 volt.
We see that these values are of the same order of magnitude as the linear dimensions of the atoms, the optical frequencies, and the ionization-potentials.
The general importance of Planck’s theory for the discussion of the behaviour of atomic systems was originally pointed out by Einsteinaw. The considerations of Einstein have been developed and applied on a number of different phenomena, especially by Stark, Nernst, and Sommerfield [sic]. The agreement as to the order of magnitude between values observed for the frequencies and dimensions of the atoms, and values for these quantities calculated by considerations similar to those given above, has been the subject of much discussion. It was first pointed out by Haasax, in an attempt to explain the meaning and the value of Planck’s constant on the basis of J.J. Thomson’s atom-model by help of the linear dimensions and frequency of an hydrogen atom.
Systems of the kind considered in this paper, in which the forces between the particles vary inversely as the square of the distance, are discussed in relation to Planck’s theory by J. W. Nicholsonay. In a series of papers this author has shown that it seems to be possible to account for lines of hitherto unknown origin in the spectra of the stellar nebulae and that of the solar corona by assuming the presence in these bodies of certain hypothetical elements of exactly indicated constitution. The atoms of these elements are supposed to consist simply of a ring of a few electrons surrounding a positive nucleus of negligibly small dimensions. The ratios between the frequencies corresponding to the lines in question are compared with the ratios between the frequencies corresponding to different modes of vibration of the ring of electrons. Nicholson has obtained a relation to Planck’s theory showing that the ratios between the wave-length of different sets of lines of the coronal spectrum can be accounted for with great accuracy by assuming that the ratio between the energy of the system and the frequency of rotation of the ring is equal to an entire multiple of Planck’s constant. The quantity Nicholson refers to as the energy is equal to twice the quantity which we have denoted above by W. In the latest paper cited Nicholson has found it necessary to give the theory a more complicated form, still, however, representing the ratio of energy to frequency by a simple function of whole numbers.
The excellent agreement between the calculated and observed values of the ratios between the wave-lengths in question seems a strong argument in favour of the validity of the foundation of Nicholson’s calculations.
These objections are intimately connected with the problem of the homogeneity of the radiation emitted. In Nicholson’s calculations the frequency of lines in a line-spectrum is identified with the frequency of vibration of a mechanical system, in a distinctly indicated state of equilibrium. As a relation from Planck’s theory is used, we might expect that the radiation is sent out in quanta; but systems like those considered, in which the frequency is a function of the energy, cannot emit a finite amount of a homogeneous radiation; for, as soon as the emission of radiation is started, the energy and also the frequency of the system are altered. Further, according to the calculation of Nicholson, the systems are unstable for some modes of vibration. Apart from such objections—which may be only formal—it must be remarked, that the theory in the form given does not seem to be able to account for the well-known laws of Miner and Rydberg connecting the frequencies of the lines in the line-spectra of the ordinary elements.
It will now be attempted to show that the difficulties in question disappear if we consider the problems from the point of view taken in this paper. Before proceeding it may be useful to restate briefly the ideas characterizing the calculations on p. 5. The principal assumptions used are:(1) That the dynamical equilibrium of the systems in the stationary states can be discussed by help of the ordinary mechanics, while the passing of the systems between different stationary states cannot be treated on that basis.
(2) That the latter process is followed by the emission of a homogeneous radiation, for which the relation between the frequency and the amount of energy emitted is the one given by Planck’s theory.
The first assumption seems to present itself; for it is known that the ordinary mechanics cannot have an absolute validity, but will only hold in calculations of certain mean values of the motion of the electrons.
On the other hand, in the calculations of the dynamical equilibrium in a stationary state in which there is no relative displacement of the particles, we need not distinguish between the actual motions and their mean values. The second assumption is in obvious contrast to the ordinary ideas of electrodynamics but appears to be necessary in order to account for experimental facts.