Book Read Free

Marine: A Guided Tour of a Marine Expeditionary Unit

Page 24

by Tom Clancy


  Pilots tend to be exceedingly suspicious of anything with the word "joint" attached to it, unless they are talking to an orthopedic surgeon about a sports injury. From an aviator's perspective, a "joint" aircraft is likely turn into a camel (i.e., a "horse designed by a committee"). The three services have radically different tactical doctrines and tribal cultures, and even the most brilliant design team will face a thicket of compromises in trying to fit one airframe to such widely different customers. If you are flying an aircraft into combat, you want that feeling of confidence that only comes from knowing that the designer made no compromises with anything, including the laws of physics. JSF's program managers, aware of this issue, are striving for a relatively modest goal-80%, "commonality" of major structural components and systems.

  JSF is actually three aircraft. A conventional takeoff and landing (CTOL) model will replace the Air Force's F-16 Fighting Falcon, with a unit price target of $28 million, and an awesome procurement target of 1,874 units. A Navy version to replace the aging F-14 Tomcat and early F/A-18 Hornet types will have a strengthened fuselage structure and special landing gear for carrier operations, raising the unit cost to between $35 and $38 million, with a requirement for at least 300 units. The Marine version, to replace the Harrier, will be capable of short takeoff and vertical landing (STOVL), at a unit price of $30-32 million. The Marines want 642 units. Three industry teams are competing for the contract. They include Boeing, McDonnell Douglas/Northrop Grumman/British Aerospace, and Lockheed Martin.

  All the designs show a strong influence from the F-22 and F-23 advanced stealth fighter designs, with widely separated twin tail fins, splayed out at a sharp angle. The Boeing design has a hinged air scoop under the nose, which gives the aircraft an uncanny resemblance to a gasping fish. The inlet swings down to increase airflow to the engine at low speeds, and swings up to reduce overall drag at high speed. The twin exhaust nozzles rotate, just like on the Harrier. The McDonnell design looks like a slimmed-down F-23, with sharply swept wings mounted well aft. The Lockheed Martin design has a vertically mounted lift fan, driven during takeoff by power from the main engine, just behind the cockpit. There are small canards (auxiliary wings) mounted just forward of the main wings, which closely resemble the diamond-shaped planform of the F-22. In effect, there will be as many as nine different prototype designs, all using the Pratt & Whitney F119 turbofan developed for the F-22. This was the first turbofan capable of supersonic cruise without use of a gas-guzzling afterburner. General Electric will also continue development of its F-120 engine, which was not selected in the F-22 competition, but represents a viable alternative if F-119 development runs into difficulties.

  A Bell Boeing MV-22 Osprey tilt-rotor transport begins the transition to forward flight following takeoff. The engines are beginning to tilt forward and the landing gear are retracting.

  BELL HELICOPTER-TEXTRON

  A prototype MV-22 Osprey on the USS Wasp (LHD-1) during compatibility trials. This aircraft has the wing and rotor blades fully folded in the fore-and-aft position to save stowage space aboard ship.

  BELL HELICOPTER-TEXTRON

  For the JSF program, failure is not an option. Low-rate initial production is scheduled to begin in 2005, and deliveries to operational units are pegged for 2007. By that date, several generations of combat aircraft will be facing block obsolescence, even if we are lucky and no unexpected new threats emerge. Many types that are familiar sights in 1996 will have been prematurely retired, due to escalating maintenance and support costs, airframe fatigue, and normal peacetime attrition.

  The Future: The Bell Boeing MV-22 Osprey

  We call it a helicopter only because it takes off and lands vertically, but the V-22 Osprey really performs like a small C-130 Hercules transport. As for the importance of the program, the Osprey is designed to replace the entire fleet of CH-46 Sea Knights, which will be entering their fifth decade of service by the time that the V-22 arrives on the scene. It also represents the single biggest technological gamble in the history of the Marine Corps. On the strange wings of the Osprey, the Marines have bet not only their ability to conduct vertical envelopment assaults, but the whole future of over-the-horizon/standoff amphibious warfare.

  Ever since the Wright brothers began to fly heavier-than-air vehicles on the Atlantic shore at Kitty Hawk, North Carolina, there has been a dream that you could build an airplane that would take off vertically like a helicopter and still fly like a conventional airplane. The Harrier represents one set of engineering compromises to achieve this, though at a high cost in range and payload. But even tougher to build than a fighter/bomber is a medium lift transport aircraft with the lifting performance of a CH-46 and the speed and range of a C-130 Hercules. Back in the 1950s the idea was put forth that perhaps you could place the engines of such an aircraft out on the ends of the wings, then tilt the engines in much the same way that the vectored thrust nozzles of the Harrier's Pegasus engine rotate. The first aircraft demonstrates this was the Bell XV-3, which flew in 1955, and spent eleven years testing out the tilt-rotor concept. Following this, NASA had Bell build a more advanced aircraft, the XV-15, which first flew in 1976. This incredible experimental aircraft's achievements are still legend in the flight-test world. It proved once and for all that a tilt rotor transport aircraft was not only possible, but would have some very desirable qualities.

  Next came the multi-service Joint Vertical Experimental (JVX) requirement, for over five hundred tilt rotor transport aircraft for combat search and rescue (CSAR), special operations (SPECOPS), medical evacuation (MEDEVAC), and replacement of the entire fleet of CH-46 Sea Knights and CH-53D Sea Stallions. In 1983, a team of Bell-Textron and Boeing Vertol won the JVX contract for design and development of what would become known as the V-22 Osprey. Development continued throughout the 1980s, and appeared to be going well despite the usual glitches associated with any new aircraft. Then, as a cost-cutting move, Secretary of Defense Dick Cheney abruptly canceled the entire program in 1989, leaving Bell Boeing with a big nothing for all their work, and all four of the services scrambling to find replacements for the Osprey. As it turned out, they never did, and this caused a small guerrilla movement to break out among the services to revive the V-22. As if this was not enough of a challenge, there were a pair of crashes by prototype V-22s (neither of which was design-related), which gave opponents lots of ammunition for keeping the program canceled. Though no one was lost in the first accident, in the second, all seven aboard were killed; and things looked bleak for the Osprey and those who had backed it.

  Then, in 1993, good things began to happen for the V-22. The coming of a new Administration allowed the Department of Defense to take a fresh look at the aircraft and the requirements it was meant to fulfill. After a small mountain of studies, the Clinton Administration decided to restart the Osprey production program, and began to work towards a planned initial operational capability for the first squadron of 2001. Since that time, the first new production Ospreys, officially designated MV- 22B (this is the Marine variant), have been mated and are moving towards final assembly. The first flight is scheduled for 1996, and the program is moving along well; it's on time and on budget. As an added bonus, the other three services have reevaluated their requirements and are beginning to get back into the V-22 program, with the Air Force's SPECOPS program first among the newcomers. Current program production plans have the USMC buying 425, the Air Force 50 for special operations, and the Navy 48 for CSAR, for a planned total of 523 units. Current cost estimates place the average flyaway cost (including non-recurring R&D costs) of around $32 million a copy, though Bell-Boeing thinks that they can get that down to under $29 million.

  As currently planned, the MY-22 will be about 57 ft, 4 in./25.8 m long with a wingspan of 50 ft, 11 in./15.5 m, and a height of 22 ft, 7 in./6.9 m. It will weigh in empty at 31,886 1b/14,463 kg, and will have a maximum takeoff weight of 60,500 lb/27,947 kg in a STOVL mode. Maximum payload will be twenty-four fully loaded troops or 20,
000 1b/9,072 kg of cargo. Performance will include a top-level flight speed of 314 kt/582 kph and a maximum ferry range of around 2,100 nm/3,829 km, and a tactical range of around 1,800 nm/3,336 km. These are impressive numbers for an aircraft with roughly the same folded dimensions as the CH-46. Inside the MV-22B will be a cockpit that is arguably the most advanced of any aircraft in the world. Based on the cockpit of the Air Force's MH-53J Pave Low III SPECOPS helicopter and the MC-130H Combat Talon II aircraft, it has undergone many improvements in the years that the program has taken to mature. This is a good thing, because a few years back, I nearly killed myself and a few other folks in a full-motion V-22 flight simulator, trying to fly the thing like a normal helicopter. Today, the MV-22's two man cockpit looks a lot like a normal military cockpit, with a control stick, left-side thrust control lever, and a whole panel of flat multi-function displays (MFDs) to show them all of the vital flight data. This includes a moving-map display tied to a GPS aided inertia navigation system, so that pinpoint, split-second landing operations can become the rule rather than the exception. There is also a FLIR pilotage system to allow enhanced night operations. The entire aircraft is sealed against chemical, nuclear, and biological threats by an overpressure /filter system.

  Flying this new bird is, to say the least, a bit strange. I got to try it on the new mission simulator at Bell's Plant in Fort Worth, Texas, and it was an eye-opener. To lift off, you advance the thrust control lever on your left forward, and the MV-22 lifts off smoothly. To transition to high-speed level flight, you push a small thumbwheel on the thrust control forward, and the engines rotate down in 3deg increments. Once they are in the full "down" position, you are essentially flying a high-performance turboprop transport, which is actually quite agile and comfortable. To land, you begin to pull back on the thumbwheel, causing the engines to rotate back to the vertical. The fly-by-wire system makes this very comfortable, and your eyes begin to transition to the MFD, which tells you the sink rate towards the ground. This is the critical condition to watch, because you need to keep this fairly low. Tilt-rotor aircraft cannot apply power quite as fast as normal helicopters, and you have to think a little "ahead" to make this go smoothly. If you've done it right, you should feel a gentle "thump," and you are down.

  Right now, the biggest problem facing the Osprey program is the planned rate of procurement. Originally, the Clinton Administration had planned to buy less than two dozen a year. This meant that the buy would run out to the year 2025. General Krulak is planning to speed this up to around thirty-six a year, so that the procurement of MV-22B will be completed before 2010. In this way, he hopes to avoid a funding conflict between Osprey and the planned JSF buy.

  Getting There: The Gator Navy

  Amphibious warfare is one of the most expensive and risky forms of combat ever devised. You have to move difficult and unruly cargo (combat troops), feed and care for them, and safely bring them through hostile waters to an enemy shore. You have to then deliver them, with all of their equipment and supplies, onto a beach to fight their way inland. And then they have to wait for follow-on forces or evacuation at the end of the mission. Today, most nations with coastlines have radar-equipped planes and patrol boats to locate an incoming force over the horizon. They are armed with guided missiles, coastal artillery, and mines.

  When they were planning the Normandy invasion, General Dwight D. Eisenhower and his staff in 1944 faced this problem. But things have changed a lot since then. The weapons of our time are far more lethal than those of World War II; and General Eisenhower had the unlimited resources of American, British, and Allied industry to build over five thousand ships and landing craft to "kick-in-the-door" of Nazi-occupied France. Today, a theater commander in chief (CinC) might be lucky to have a dozen such craft within a single amphibious ready group (ARG). Eisenhower could land five divisions with over 100,000 men on D-Day (June 6th, 1944). Today's CinC might have only 2,500 fighting men and women to throw onto a hostile coast. Clearly, in the fifty years since we invaded our way to victory in Europe and the Pacific, the problem has become more difficult.

  The drawdown of amphibious shipping and landing craft by the U.S. over the last few decades has been so precipitous that it has occasionally destabilized the global balance of power. When the Royal Navy announced plans in 1982 to decommission its tiny amphibious force--two Assault Ships (LPDs), and six Landing Ship, Tanks (LSTs)--Argentina promptly invaded the Falkland/Malvinas Islands. Similarly, the perceived inability of the United States to project power into the Persian Gulf in 1979 encouraged the Soviet invasion of Afghanistan and the takeover of the U.S. Embassy in Tehran by Iranian militants. By early 1996, our amphibious shipping force had fallen to its lowest level since before Pearl Harbor. This leaves the United States and her allies with just two options. One is to simply abandon the ability to influence events in global crisis areas beyond our shoreline. The other choice is to make the best use of the limited assets we retain. Luckily, we have adopted that one. This is the core of From the Sea and Forward from the Sea. The concept of operations outlined in these documents allows the U.S. to maintain a "kick-in-the-door" capability, without bankrupting the treasury or compromising other commitments.

  We don't yet have all the tools to accomplish the missions spelled out in From the Sea/Forward from the Sea. U.S. amphibious forces during the next decade or so will be a mix of older equipment and ideas and newer "over-the-horizon" (OTH) concepts. As older ships retire, a limited building program will eventually stabilize the amphibious fleet at about thirty-six ships. There will be several hundred landing craft of various types, three Maritime Prepositioning Squadrons (MPSRONs) with a dozen or so ships, and a few older ships in the Ready Reserve Fleet (RRF). And that will be it. Anything else we need will have to be borrowed from the British or another ally, or chartered from commercial shipping.

  The good news is that it will all probably work, at least under the current world order, or rather, disorder. The key is a new view of amphibious warfare that has quietly taken hold within the military over the last twenty years or so. This is the OTH concept. Instead of closing within a few thousand yards/meters of a beach to unload troops and equipment, the big ships will stay between 25 and 250 nm/46 and 457 km offshore, out of range of enemy sensors and weapons. High-speed vehicles like the Landing Craft, Air Cushioned (LCAC), the new Advanced Amphibious Assault Vehicle (AAAV), the MV-22 Osprey tilt-rotor aircraft, and the CH-53E Sea Stallion helicopter will deliver the assault forces to their assigned targets. With these vehicles and aircraft, there will be less need to be so picky about beach topography (sand, shale, beach incline, etc.) or oceanographic conditions (tides, seastates, etc.). This will mean that the area of operations (AOR), or "battlespace," can be vastly expanded, making the problems of defending a coastline more difficult. The result of all this will be to increase the value of our limited amphibious forces, while decreasing the risks they face. Meanwhile, those thirty-six amphibious ships will be the most capable and powerful ever built.

  This chapter will introduce you to the Navy's amphibious vessels. It will give you some feel for how the men and women of the 'Gator Navy live, as they do their hard, dangerous jobs in the "littoral regions" of the world.

  Amphibious Shipping/Landing Craft Development

  The fragile, lightweight oared warships of antiquity could be hauled up on a beach, but they were awkward platforms for amphibious assault. Alexander the Great's siege of the island fortress of Tyre on the Lebanese coast in 332 B.C. saw early examples of ingenious improvisation on both sides, with ships lashed together to provide platforms for siege towers and battering rams. The Viking longships of the Dark Ages demonstrated amazing seaworthiness and adaptability--the amphibious raiding strategy of the Norsemen dominated Europe for centuries. During the age of wooden sailing ships, various nations built landing barges with assorted fixtures (ramps, cranes, etc.) to load and unload troops, horses, and equipment. This is all well and good, but having a big navy and lots of troops does
not guarantee a successful amphibious assault. The Spanish Armada in 1588 and Napoleon Bonaparte's aborted invasion of England in 1805 are classic examples of failures. The land-oriented military doctrine of continental empires could never quite solve the problem of crossing even the 30 nm/55 km of English Channel. In 1940, German General Staff planners thought crossing the Channel would simply be a "river crossing along a wide front." Wrong!

  Many factors go into the execution of a successful amphibious assault, including air supremacy and sea control. But crossing the interface of land and water, known to most of us as "the beach," is the most difficult part, technologically and militarily. The beach or littoral zone can be a dangerous place, even if you just want to swim and sun yourself. Now try to move thousands of troops, hundreds of vehicles, and thousands of tons of equipment and supplies across it. It takes a lot of horsepower and engineering to create machines that enable men to do the job, and more than a little political capital. That is where our story about landing craft and amphibious ships starts. During the period between the World Wars, the problem of beach landing obsessed several groups of officers and engineers on both sides of the Atlantic. In America, Marines searching for a new mission to justify their continued existence saw amphibious assault as their future. During the 1930s they observed with interest a series of small operations by Japanese naval landing forces in China, utilizing specialized landing barges.

 

‹ Prev