Book Read Free

Reaching for the Moon

Page 16

by Roger D. Launius


  Soviet and American Lunar Space Suits

  In addition to spacecraft technology, both the Soviet and American Moon programs invested heavily in the development of space suits for their respective lunar missions. The resultant suits were strikingly different. In the mid-1960s Soviet engineers built the Krechet-94 extravehicular activity (EVA) suit. Weighing 198 pounds and worn over a liquid-cooled undergarment, the suit could operate continuously for ten hours, and had a lifespan of forty-eight hours. It also had a semirigid structure, with the hard upper torso section constructed from aluminum, but its most important innovation was the hatch opening at the suit’s backpack, which made it easier for cosmonauts to get into and out of it. The Krechet-94’s chest-mounted instrument panel offered cosmonauts excellent control over their own life-support systems. While Krechet-94 was never used on the Moon, its design influenced many later Russian and American EVA suits.

  The American lunar suit, the A7L, was more complicated. This seventh iterative version of the Apollo suit was designed to provide life support during periods either on the Moon or during weightless EVAs in space. It had a longer operational life than the Soviet version and could withstand as much as 115 hours of use. Like the Krechet-94, A7L also had a liquid-cooled undergarment, but it had an additional two-piece pressure suit and a further one-piece outer coverall. The suit’s helmet, gloves, and boots were all attached individually. While the A7L was certainly effective, keeping astronauts safe on their various lunar excursions and other EVAs, it was incredibly laborious to put on and take off, a concern that was factored into the development of later NASA suits.

  Soviet Rocket Technology

  While the Soviet Union publicly denied throughout the 1960s that it was participating in a space race, it competed aggressively to best the Americans. Khrushchev had set in motion two distinct efforts in the aftermath of JFK’s Moon-landing decision, both of them intensely secret. The first, a lunar flyby with cosmonauts using the Soyuz 7K-L1 (Zond) spacecraft launched atop the Proton-K rocket, proceeded under the direction Vladimir Chelomey, whose patronage from Khrushchev brought him favor in acquiring resources for this flight. This program, L3, enjoyed the support of Valentin Glushko, whose rocket engines were the finest available in the Soviet Union. Glushko had no love for Sergei Korolev, whose design bureau competed with Chelomey’s efforts. While Korolev scored the mission to land cosmonauts on the Moon, he constantly faced bureaucratic infighting from other design bureaus. This gang of rivals fought to a near standstill for priority in the Soviet system and the resources that would be needed to reach the Moon. If there was one fundamental difference between success as perceived by the Americans and by the Soviets, it was that NASA had a clear and public mandate to reach the Moon by the end of the decade, which no one could challenge, while the Soviets had no one decision-making authority to which all rallied. No decision was ever final for the Soviets, and navigating the politics of the Kremlin was as convoluted as a Dostoevsky novel.

  The bureaucratic challenges were laid bare in the aftermath of Korolev’s death in January 1966. The management of the Soviet side of the space race was already in disarray, but with Korolev no longer a participant what gravitas he held was gone with him. The Soviet Moon program declined into bickering among various design bureau heads and Kremlin busybodies. Vasily Mishin took over for Korolev, but he was unable to corral the funding necessary to accomplish the purpose. For his part, Chelomey argued that the circumlunar program powered by Glushko’s Proton rocket should receive priority over the Korolev/Mishin-led landing effort. This bureaucratic infighting cost the Soviets in terms of time and money. Meantime, design work on the N1 rocket progressed. It stood 345 feet tall and had a mass of about 2,750 tons. The first stage had thirty engines, the second stage had eight, and the third had four. All the engines were powered by liquid oxygen and kerosene, per Korolev’s original decision. Lacking time and money, Soviet designers decided to skip full-scale testing of the first stage on the ground. This decision proved fatal, since in four test flights the rocket never did perform successfully.

  The upper stage included a translunar booster stage, an upper stage for braking into lunar orbit, a lunar orbiter, and a lunar lander. Unlike the American Apollo spacecraft, which carried three people, the Soviet spacecraft would carry two cosmonauts, one to land on the Moon and one to circle the Moon.

  Committed to the end, Mishin planned another spectacular in the game of one-upmanship, seeking to send the first cosmonauts around the Moon in December 1968, a few days before NASA’s planned Apollo 8 Christmastime circumlunar mission with three astronauts. Zond 6 was an attempt, like the Leonov spacewalk in 1965, to beat a planned American mission to the Moon. Had the Soviets pulled it off, the Kremlin might have extended additional funding for the space race, including a mandate for additional space spectaculars to best the Americans. But when Zond 6 failed to land safely in a test, there was no choice but to postpone a piloted Zond mission. After Apollo 8’s singular success, the Kremlin saw no need to continue the circumlunar program and cancelled it in 1970.

  The Soviet Moon-landing project fared no better. After years of delay, the first test of the large N1 Moon rocket in February 1969 also failed. A success might have meant that the Soviet Union could once again one-up the U.S. effort by beating the Americans to a landing. Because of a fire at the bottom of the first stage, however, all engines shut down seventy seconds after launch, and the rocket did not reach orbit. During a second test launch in July 1969, only two weeks before the Apollo 11 landing mission, the N1 rocket failed to rise beyond 650 feet before collapsing in a massive engine explosion that destroyed the launch complex. As the successful American Moon landings continued, a June 1971 N1 launch also ended in failure; this time the booster’s first-stage engines shut down fifty seconds into flight. A final launch in November 1972 ended in a failure of the second stage, with the rocket exploding in flight.

  In May 1974 the Kremlin shut the whole program down. Mishin protested, but to no avail, as government officials directed that the remaining hardware be destroyed to validate the Soviets’ continuing denial that the USSR had ever intended to engage in a race to the Moon. While a few remaining test articles and models of the lunar orbiter and lander are in Russian museums, few other components of the hardware remain. N1 rocket pieces are on display at the Baikonur Cosmodrome, a grim reminder of what might have been.

  Glushko, Korolev’s rival, took over as head of the Soviet space program, while Mishin was cashiered after the N1 debacle. Mishin became a nonperson in the space program; his name was never again mentioned in any account of Soviet efforts until the collapse of the USSR and the death of Glushko. Mishin lived until 2001 and told his story effectively in the first decade after the Soviet collapse, based in part on an extensive, fascinating, and revealing set of contemporary diaries that documented just how chaotic the Soviet lunar program had been.

  For all of the individual capabilities of those associated with the Soviet lunar program, the dominant reasons for American success and Soviet failure in reaching the Moon involved three fundamental issues:

  1. Clear mandates for the Americans and a lack of them for the Soviets, with resulting differences in establishment of priorities and allocation of resources over a lengthy technology development period;

  2. Clear lines of authority with a singular decision maker (NASA) for the Americans and an absence of such concentration in the Soviet Union. Korolev held together through force of will early human space-exploration efforts, but with his death no one else had the gravitas to continue;

  3. More advanced technical capabilities for the Americans than for the Soviets. For example, Soviet rocket engine technology was incapable of building the large engines developed by the Americans. It took thirty Soviet engines to do the same job as five American engines in launching the Moon rocket. The Soviets never were able to make their engines work well together and reach orbit.

  Effectively, the race to the Moon was over before the first
Apollo mission ever went there. No one knew that at the time, of course, in either the United States or the USSR, but in retrospect it was objectively true.

  SEVEN

  Realization

  What might we make of the culmination of Apollo, from the first test flights to the various human lunar missions? The realization of this achievement—the individual missions, including direction of the Apollo missions from Mission Control, and launch operations at the Kennedy Space Center—represents one of the high points in the history of the Cold War (Table 8). A reconsideration of the truly remarkable aspect of actually flying to the Moon offers insights into the space race. Looking back fifty years, it also points up a core question about the history of spaceflight, “If we could send a man to the Moon” in 1969, then “why can’t we send a man to the Moon” in the early twenty-first century? Examining how the Soviet Union and the rest of the world reacted to the American success opens a door for a reconsideration of the entire episode. The space race led to the desire to change the nature of the competition between the United States and the USSR. Détente offered a way for the two nations to cooperate, and led to the spectacularly successful Apollo-Soyuz Test Project of 1975; the Soviet mission commander was Alexei Leonov, the first human to walk in space in 1965.

  TABLE 8

  APOLLOS 7–13

  Testing the Apollo/Saturn V Hardware

  Many people doubted NASA’s capabilities in the aftermath of the January 1967 Apollo fire, which killed three astronauts. But that doubt seems to have abated in 1968, and was seemingly swept away altogether during the successful lunar-landing missions between 1969 and 1972. The change began with the October 1967 test flight of Apollo 7. Though the Apollo 7 mission is overshadowed by later, more ambitious missions, it was an enormous confidence builder, not only for NASA and those working in the space program but also for the public at large. As an Earth orbital shakedown, the Apollo 7 mission proved the spaceworthiness of the Apollo spacecraft, but it did much more, reviving the widespread belief that Moon landing was possible, and that NASA could accomplish it.

  A sampling of political cartoons from major dailies around the country in late October 1968 finds Apollo 7 the subject of sustained praise. One shows a beaming Uncle Sam in a Greek toga reclining on clouds, with the Moon in the background. He holds an Apollo/Saturn stack in his arm as if throwing it as a javelin, and sports a gold medal around his neck. The caption reads, “A Gold Medal in the Lunar Olympics.” Another cartoon shows a suspension bridge being built from Earth to the Moon. On the bridge’s roadway is the statement, “Apollo 7 Success.” The caption reads, “Almost Ready for the Ribbon-Cutting.” A third editorial cartoon, titled “Another Winner,” shows dice coming up “Apollo Seven” emerging from a shaker labeled “Space Risks.” Finally, the Christian Science Monitor showed Apollo 7 splashing down in the ocean silhouetted against a full Moon in the background with the caption, “Splashdown on the Way Up.”

  While the Apollo 7 mission was significant, the testing of the lunar module represented the most serious challenge. Overcoming the lunar module’s budgetary and schedule problems, NASA orbited the first LM on a Saturn V test launch in January 1968 and judged it ready for operation. The lunar module showed its mettle during the first two piloted test flights. During Apollo 9, March 3–13, 1969, the crew tested the LM in Earth orbit; and on Apollo 10, May 18–26, 1969, the LM performed well in lunar orbit, going as close to the surface as 60.9 nautical miles by 8.5 nautical miles. With those successes, the landing phase of the Apollo program commenced.

  Apollo 8: The First Trip Around the Moon

  Apollo 8 began as another test flight of the Apollo system in Earth orbit, but it turned into arguably the most important mission flown during Apollo other than the Apollo 11 landing. It took off atop a Saturn V booster from the Kennedy Space Center with three astronauts aboard—Frank Borman, James A. Lovell, Jr., and William A. Anders—for a historic mission to orbit the Moon. Bob Gilruth’s senior engineer George M. Low, who had replaced Joe Shea as Apollo spacecraft program manager, proposed turning Apollo 8 into a circumlunar flight. He recognized that other hardware, especially the lunar module, was not yet ready for testing and that the Soviet Union seemed to be focused on its Zond circumlunar flight in the fall of 1968. Low persuaded Samuel C. Phillips, Apollo program manager at NASA headquarters, to support the scheme, and the two of them gained approval to make Apollo 8 a circumlunar flight.

  The advantages of doing this could be important, both in technical and scientific knowledge gained and as a public demonstration of what the United States could achieve. So far Apollo had been all promise; now the delivery was about to begin. In the summer of 1968 Low broached the idea to Phillips, who carried it to the administrator. After reviews in November the agency reconfigured the mission for a lunar trip.

  Apollo 8 launched on December 21, 1968, and after it made one and a half Earth orbits, its third stage began a burn to put the spacecraft on a lunar trajectory. As it traveled outward, the crew focused a portable television camera on Earth, and for the first time humanity saw its home from afar, a tiny, lovely, fragile “blue marble” hanging in the blackness of space. When the craft arrived at the Moon on Christmas Eve, this image of Earth was even more strongly reinforced, when the crew transmitted images of the planet while reading from the chapter of Genesis: “God created the heavens and the Earth, and the Earth was without form and void.” The next day the crew fired the boosters for a return flight, “splashing down” in the Pacific Ocean on December 27.

  This first circumlunar flight may be best remembered for two noteworthy results. First, the decision to send a Saturn V on only its first flight with a crew around the Moon was one of the gutsiest calls in NASA’s history. After the Apollo 1 fatal capsule fire in January 1967, NASA fell behind schedule to land on the Moon by the end of the decade. To catch up, NASA leaders concocted a bravura scheme to regain momentum by making Apollo 8 a lunar flyby. The advantages were obvious: NASA acquired the knowledge needed to undertake the landing, and the flight served as a worldwide demonstration of U.S. technological excellence.

  Second, during Apollo 8 Bill Anders from lunar orbit took one of the most critically significant images of the twentieth century, later dubbed Earthrise. Usually depicted horizontally, this photograph showed the Moon, gray and lifeless in the foreground, with Earth awash in color and hanging in the blackness of space. Earthrise symbolized for more than a generation an emerging environmental consciousness. The astronauts did not realize the impact of their image until well after the fact; it has been lauded by poets and pundits, preservationists and potentates. At a fundamental level Earthrise became the ultimate reconnaissance photograph of Earth taken from afar. It has found use in all manner of settings and places since it first entered the public’s consciousness in December 1968.

  Figure 13. Earthrise, one of the most powerful and iconic images from the Apollo program, was taken in December 1968 during the Apollo 8 mission. This view of the rising Earth greeted the Apollo 8 astronauts as they came from behind the Moon after the first lunar orbit. Used as a symbol of the planet’s fragility, it juxtaposes the gray, lifeless Moon in the foreground with the blue and white Earth teeming with life hanging in the blackness of space.

  Apollo 8 was an enormously significant accomplishment, coming at a time when American society was in crisis. Without question, 1968 had been one of the most tumultuous years in American history. The year’s upheaval began on January 23, with North Korea’s capture of the American surveillance ship USS Pueblo, beginning an eleven-month hostage crisis. A week later the Tet offensive began in Vietnam, with North Vietnamese and Viet Cong troops attacking Saigon and more than one hundred other cities. In April, the assassination of Martin Luther King, Jr., by a white supremacist led to riots in more than a dozen major cities. Presidential candidate Robert F. Kennedy died in June from a gunman’s bullet after winning the California Democratic primary. Summer ended in violence at the Democratic National Conven
tion in Chicago, and the troubles of the time were further demonstrated in October when two African-American medalists at the Olympic Games raised their fists in silent protest to the injustice they saw around them. A sizable percentage of the U.S. population believed the election of Richard M. Nixon as president in November signaled a national torpor at best and a distinct turn toward oblivion at worst. Emotions ran high, and while interpretations varied, all agreed that the United States was seemingly unraveling.

  At the end of 1968, Apollo 8’s success felt like a salve on an open wound for many Americans. Frank Borman has often told the story of how he received a telegram after the mission that read: “Thank you, Apollo 8. You saved 1968.”

  Apollo 11: The Main Event

  Then came the big event. Astronauts Neil A. Armstrong, Buzz Aldrin, and Michael Collins were thoroughly prepared and well rehearsed for their mission. NASA scientists had found a suitable landing site that was geologically interesting but also an open flat plain. Engineers had drilled the crew on every aspect of the mission’s weeklong flight. They practiced space walks in a deep swimming pool dubbed the Neutral Buoyancy Simulator, donned and doffed spacesuits repeatedly, and trained for entry and exit of both their capsule and the lunar module. In addition to all this, Armstrong practiced landing the LM in the Moon’s lower gravity, roughly one-sixth of Earth, using the Lunar Landing Research Vehicle simulator for practice in Houston.

 

‹ Prev