Book Read Free

Timefulness

Page 24

by Marcia Bjornerud


  oxygen 2.5 billion years ago. Nature, 448, 1033– 1036. doi:10.1038/nature06058.

  13. Johnson, T., et al., 2014. Delamination and recycling of Archean crust caused

  by gravity instabilities. Nature Geoscience, 7, 47– 52. doi:10.1038/ngeo2019.

  14. Lyons, T., Reinhard, C., and Planavsky, N., 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 307, 506– 511. doi:10.1038/nature13068.

  15. Planavsky, N., et al., 2014. Low mid- Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346, 635– 638. doi:10.1126/science.1258410.

  16. Reinhard, C., et al., 2016. Evolution of the global phosphorus cycle, Nature, doi:10.1038/nature20772.

  17. Wolf, E., and Toon, O., 2015. Delayed onset of runaway and moist green-

  house climates for Earth. Geophysical Research Letters, 41, 167– 172.

  doi:10.1002/2013GL058376. The good news is that this study extended the

  habitable period from the truly depressing estimates of 170– 650 million years!

  18. Planavsky, N., et al., 2010. The evolution of the marine phosphate reservoir.

  Nature, 467, 1088– 1090.

  19. Erwin, D., et al., 2011. The Cambrian conundrum: Early divergence and later

  ecological success in the early history of animals. Science, 334, 1091– 1097.

  doi:10.1126/science.1206375.

  20. Kelvin’s phrase, in a letter to John Phillips. Quoted in Morrell, J., 2001. The age of the Earth in the twentieth century: A problem (mostly) solved. In Lewis, C.,

  and Knell, S., The Age of the Earth from 4004 BC to AD 2002. Geological Society of London Special Publication 190, 85– 90.

  21. McCallum, M., 2007. Amphibian decline or extinction? Current declines

  dwarf background extinction rate. Journal of Herpetology, 41, 483– 491.

  doi:10.1670/0022– 1511.

  22. Raup, D., and Sepkoski, J., 1984. Periodicity of extinctions in the geologic past.

  Proceedings of the National Academy of Sciences, 81, 801– 805.

  notes to chapter 5 199

  23. Whitman, W., Coleman, D., and Wiebe, W., 1998. Prokaryotes: The unseen

  majority. Proceedings of the National Academy of Sciences, 95, 6578– 6583.

  5 . G R E AT A C C E L E R AT I O N S

  1. Cooper, K., and Kent, A., 2014. Rapid remobilization of magmatic crystals kept

  in cold storage. Nature, 506, 480– 483. doi:10.1038/nature12991.

  2. Webber, K., et al., 1999. Cooling rates and crystallization dynamics of shallow

  level pegmatite- aplite dikes, San Diego County, California. American Mineralo-

  gist, 84, 718– 717.

  3. Zalasiewicz, J., et al., 2008. Are we now living in the Anthropocene? GSA Today, 18(2), 4– 8. doi:10.1130/GSAT01802A.1.

  4. Lambeck, K., et al., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences, 111, 15296– 15303. doi:10.1073/pnas.1411762111.

  5. Center for Biological Diversity, http:// www .biologicaldiversity .org /programs

  /biodiversity /elements _of _biodiversity /extinction _crisis/.

  6. Gerlach, T., 2011. Volcanic vs. anthropogenic carbon dioxide. Eos, Transactions, American Geophysical Union, 92, 201– 203.

  7. Rockström, J., et al., 2009. A safe operating space for humanity. Nature, 461, 472– 475. doi:10.1038/461472a.

  8. Haberl, H., et al., 2007. Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystem. Proceedings of the National Academy of Sciences, 104, 12942– 12947. doi:10.1073/pnas0704243104.

  9. Walker, M., et al., 2009. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP

  ice core, and selected auxiliary records. Journal of Quaternary Science, 24, 3– 17.

  doi:10.1002/jqs.1227.

  10. Thompson, L., et al., 2013. Annually resolved ice core records of tropical cli-

  mate variability over the past 1800 Years. Science, 340, 945– 950. doi:10.1126/

  science.123421.

  11. Zhang, D., et al., 2011. The causality analysis of climate change and large- scale human crisis. Proceedings of the National Academy of Sciences, 108, 17296– 17301.

  doi:10.1073/pnas.1104268108.

  12. Hsiang, S., Burke, M., and Michel, E., 2013. Quantifying the influence of climate on human conflict, Science, 341, 1212– 1228. doi:10.1126/science.1235367.

  13. Milly, P., et al., 2008. Stationarity is dead: Whither water management? Science, 319, 573– 574. doi:10.1126/science.1151915.

  14. Alley, R., 2000. The Two- Mile Time Machine: Ice Cores, Abrupt Climate Change, and our Future. Princeton, NJ: Princeton University Press, p. 126.

  15. Berger, A., 2012. A brief history of the astronomical theories of paleoclimate.

  In Berger A., Mesinger F., and Sijacki, D. (eds.), Climate Change. New York: Springer, p. 107– 128. doi:10.1007/978- 3- 7091- 0973- 1_8.

  200 Notes to ch a pter 5

  16. Arrhenius, S., 1896. On the influence of carbonic acid in the air upon the tem-

  perature of the ground. Philosophical Magazine and Journal of Science, ser. 5, vol.

  41, 237– 276.

  17. Hays, J., Imbrie, J., and Shackleton, N., 1976. Variations in the Earth’s orbit: Pacemaker of the ice ages. Science, 194, 1121– 1132.

  18. A provocative segment in Neil deGrasse Tyson’s 2014 excellent TV series Cosmos depicts a city as it would look if CO2 were a purple gas. Carbon emissions would

  then be considered a public menace.

  19. The relative amount of 13C and 12C in a geologic sample is typically given in terms of the deviation of the 13C/12C ratio in a given rock (usually limestone) from an

  international standard (a “reference” piece of calcite). This deviation is called

  δ13C (delta C- 13) and defined as

  [(13C/12C sample −13C/12C standard)/ 13C/12C standard] × 1000.

  (The factor of 1000 is used so that the differences have integer values; vari-

  ations in the 13C/12C ratio are measured in parts per thousand). The change in

  the δ13C value in rocks over some period of time— denoted Δδ13C (delta delta

  C- 13)— is a measure of the severity of disturbance to the carbon cycle. A negative value of Δδ13C indicates release of biogenic (photosynthetically fixed) carbon. A

  positive value indicates organic carbon burial and/or the dominance of volcanic

  CO2 over biogenic CO2 emissions. See also Appendix III.

  20. McInerney, F., and Wing, S., 2011. The Paleocene- Eocene Thermal Maximum:

  A perturbation of carbon cycle, climate, and biosphere with implications for the

  future. Annual Reviews of Earth and Planetary Sciences, 39, 489– 516.

  21. Union of Concerned Scientists. Environmental impacts of natural gas, https://

  www .ucsusa .org /clean - energy /coal - and - other - fossil - fuels /environmental

  - impacts - of - natural - gas.

  22. Ruben, E., Davidson, J., and Herzog, H., 2015. The cost of CO2 capture and

  storage. International Journal of Greenhouse Gas Control. doi:10.1016/j.

  ijggc.2015.05.018.

  23. American Physical Society, 2011. Direct air capture of CO2 with chemicals.

  https:// www .aps .org /policy /reports /assessments/.

  24. Stephenson, N. L., et al., 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature, 507, 90– 93. doi:10.1038/nature12914.

  25. Venton, D., 2016. Can bioenergy with carbon capture and storage make an

  impact? Proceedings of the National Academy of Sciences, 47, 13260– 13262.

  doi:10.1073/pnas.1617583113.

  26. American Society for Microbiology, 2017. Colloquium Report: Microbes and

  Climate Change. https:// www .asm .org /ind
ex .php /colloquium -reports /item

  /4479 -microbes -and -climate -change.

  27. Keleman, P., and Metter, J., 2008. In situ carbonation of peridotite for CO2

  storage. Proceedings of the National Academy of Sciences, 105, 17295– 17300.

  doi:101073/pnas.0805794105.

  notes to chapter 6 201

  28. Hamilton, Clive, 2013. Earthmasters: The Dawn of the Age of Climate Engineering.

  New Haven, CT: Yale University Press.

  29. Smith, C. J., et al., 2017. Impacts of stratospheric sulfate geoengineering on global solar photovoltaic and concentrating solar power resource. Journal of Applied

  Meteorology and Climatology, 56, 1484– 1497. doi:10.1175/JAMC- D- 16– 0298.1.

  30. Tilmes, S., et al., 2013. The hydrological impact of geoengineering in the Geo-

  engineering Model Intercomparison Project (GeoMIP). Journal of Geophysical

  Research: Atmospheres, 118, 11036011958. doi:10.1002/jgrd.50868.

  31. Keith, D., 2013. A Case for Climate Engineering. Cambridge, MA: MIT Press.

  6 . T I M E F U L N E S S , U T O P I A N A N D S C I E N T I F I C

  1. For Packer cognoscenti: Desmond Bishop.

  2. Wisconsin Department of Natural Resources, Winnebago System Sturgeon Spear-

  ing, http:// dnr .wi .gov /topic /fishing /sturgeon /sturgeonlakewinnebago .html.

  3. LaTour, B., 1993. We Have Never Been Modern. Cambridge, MA: Harvard Uni-

  versity Press, p. 68.

  4. Shulman, E., 2014. Rethinking the Buddha: Early Buddhist Philosophy as Medi-

  tative Perception, Cambridge: Cambridge University Press, p. 114.

  5. A thousand years later, another Scandinavian, the Danish theologian and philos-

  opher Søren Kierkegaard (who would certainly have denied any lingering Viking

  influences) posited the complementary idea that “the future signifies more than

  the present and the past; for the future is in a sense the whole of which the past

  is a part.” [Kierkegaard, 1844, The Concept of Dread].

  6. Bauschatz, P., 1982. The Well and the Tree. Amherst: University of Massachusetts Press.

  7. Bergquist, L., 2016. Brad Schimel opinion narrows DNR powers on high-

  capacity wells. Milwaukee Journal Sentinel, 16 May 2016, http:// archive

  .jsonline .com /news /statepolitics /brad -schimel -opinion -narrows -dnr -powers

  -on -high -capacity -wells -brad -schimel -opinion -narrows -dnr -powe -378900981

  .html.

  8. Wieseltier, L., 2015. Among the Disrupted, New York Times Book Review, 7 Jan.

  2015.

  9. The full text of the Great Law can be found at http:// www .indigenouspeople .net

  /iroqcon .htm.

  10. Scheffler, S., 2016. Death and the Afterlife. Oxford: Oxford University Press, p. 43.

  11. Hauser, O., et al., 2014. Cooperating with the future. Nature, 511, 220– 223.

  doi:10.1038/nature13530.

  12. Hardin, G., 1969. The tragedy of the commons. Science, 162, 1243– 1248.

  13. Sussman, R., 2014. The Oldest Living Things in the World. Chicago: University of Chicago Press.

  14. Smith, R., 2014. On Kawara, artist who found elegance in every day dies at

  81. New York Times, 15 July 2014. https:// www .nytimes .com /2014 /07 /16 /arts

  202 Notes to ch a pter 6

  /design /on -kawara -conceptual -artist -who -found -elegance -in -every -day -dies

  -at -81 .html.

  15. John Cage Orgelprojekt Halberstadt. http:// www .aslsp .org /de/.

  16. The Long Now Foundation. http:// longnow .org /clock/.

  17. Feder, T., 2012. Time for the future. Physics Today, 65(3), 28.

  18. Osnos, E., 2017. Survival of the richest. New Yorker, 30 January 2017.

  19. Vizenor, G., 2008. Survivance: Narratives of Native Presence. Lincoln: University of Nebraska Press.

  20. Loew, P., 2014. Seventh Generation Earth Ethics: Native Voices of Wisconsin. Mad-ison: University of Wisconsin Press.

  21. Wolf, E., and Toon, O., 2015. The evolution of habitable climates under the

  brightening Sun. Journal of Geophysical Research: Atmospheres, 120, 5775– 5794.

  doi:10.1002/2015JD023302.

  22. http:// www .scotese .com /future2 .htm. See also Broad, W., 2007, Dance of the continents. New York Times, 9 January 2007. http:// www .nytimes .com /2007 /01

  /09 /science /20070109 _PALEO _GRAPHIC .html ?mcubz = 2.

  23. Vonnegut was interviewed in 2005 by David Brancaccio on PBS Now. http://

  www .pbs .org /now /transcript /transcriptNOW140 _full .html.

  24. Tracy, J., Hart, H., and Martens, J., 2011. Death and science: The existential

  underpinnings of belief in intelligent design and discomfort with evolution.

  PloSONE 6: e17349. doi:10.1371/journal.pone.0017349. http:// www .plosone

  .org /article /info %3Adoi %2F10 .1371 %2Fjournal .pone .0017349.

  25. Dobzhansky, T., 1973. Nothing in biology makes sense except in the light of

  evolution. American Biology Teacher, 35(3), 125– 129. It should be noted that Dobzhansky was a theist and devout member of the Eastern Orthodox Church

  who saw no conflict between his work in evolutionary biology and his belief

  in God.

  26. Smolin L., 2014. Time, laws, and the future of cosmology. Physics Today, 67(3), 38– 43.

  27. Freud, S., 1929, translated by James Strachey, 1961. Civilization and Its Discontents. New York: W.W. Norton, p. 15– 19.

  28. Durkheim, É., 1912. The Elementary Forms of the Religious Life. Translated by K. Fields, New York: Free Press (1995), p. 228.

  I N D E X

  Acasta gneiss, 98, 197, 110

  basalt, 62–63, 70–73, 99, 103, 121

  acid rain, 120–21, 156

  Baumol’s “disease, ” 12

  Africa, 53, 55, 88

  Beagle, Voyage of, 26, 84

  Agassiz, Louis, 135

  Becquerel, Henri, 33

  Agassiz, Glacial Lake, 135

  Bengal Fan (Indian Ocean), 77, 89

  age of the Earth, 23, 28–30, 40–47

  Big Bang theory, 43

  albedo effect, 112, 142

  biogeochemical cycles, 81–83, 97, 128,

  Alley, Richard, 134

  148, 187; disruptions of, in mass

  Alps, 39, 73, 74, 83, 135, 172

  extinctions, 123–5; human perturba-

  Aleutian Islands, 72

  tions of, 129, 153, 155; in Proterozoic

  Alvarez, Luis and Walter, 54–56, 119

  time, 105–9. See also carbon cycle.

  amphibians, 118, 121

  biostratigraphy, 36

  Andes, 72, 131

  Blackmore, Susan, 175

  animals, origin of 115–6

  black smokers, 71

  Angkor Kingdom, 132

  “Boring Billion” (interval in Proterozoic

  Anning, Mary, 27

  time), 108–11, 128

  anoxia, oceanic, 123–4, 129, 153

  brachiopods, 114

  Antarctica, 2,55, 138, 168

  Brahmaputra River, 77, 89

  Anthropocene, 91, 128–131, 133, 167,

  Brazil, 69

  177

  bristlecone pine, 167

  Apennines, Italian, 55

  British Columbia, 87, 153

  apocalypticism, 11–12, 119

  Buddhism, 162

  Appalachian Mountains, 3, 38, 89–90

  Bunin, Rabbi Simcha, 177

  Archean Eon, 98–103

  archeology, 51, 53

  14C dating, 50–52, 59

  Arctic, 2–5, 81, 93–95, 141–2, 180

  Cage, John, 168–9

  Argon-argon dating, 54–57

  calcite, 82–83, 114, 123, 146, 153–4

  Argonne National Laboratory, 45

  Caledonides, 3, 10,
73

  Arhennius, Svante, 138

  California, 154

  ash, volcanic, 37–38, 53

  California Institute of Technology, 45

  Asia, 73, 74, 132, 156

  Cambrian explosion, 114–5, 123

  asthenosphere, 83

  Cambrian Period, 28, 29, 40, 58, 114–5

  astrobiology, 14

  Cambridge University, 33

  Atlantic Ocean, 62, 68, 69, 143, 147

  Canadian Shield, 53, 57–58, 98, 110

  Atwood, Margaret, 168

  Cape Verde Islands, 88

  Australia, 58–59, 101–2, 114, 167

  carbon capture and storage, 148–153

  carbon cycle, on geologic timescales,

  Bangladesh, 77

  81–83, 106, 141–2; 172; human

  baobab trees, 167

  perturbations of, 143–54; and mass

  Baraboo Hills, Wisconsin, 78

  extinctions, 123–4

  204 I n dex

  carbon dating. See 14C dating

  Dangaard-Oeschger cycles, 140

  carbon dioxide in atmosphere, 81–83,

  Darwin, Charles, 25–56, 28–32, 35, 40,

  96, 121–4, 129, 138, 141–55

  61, 63, 84, 116–7, 137, 175–6

  carbon market or tax, 149, 150

  Dawkins, Richard, 175

  carbon, stable isotopes of, 100, 139,

  day, length of in geologic past, 99

  146

  dead zones in ocean, 123–4, 129, 153

  Carboniferous Period, 40

  decay constant, 33–35

  Caribbean Sea, 56

  Deccan Traps, 121

  Carnegie, Andrew, 103

  decompression melting, 64

  Cascade Range, 72

  Descartes, René, 8

  Cascadia subduction zone, 87

  Devonian Period, 35, 40, 91, 123

  catastrophism, 24, 56, 120, 122

  diamond, 59

  Cenozoic Era, 27, 68, 81, 116, 118

  dinosaurs, 54, 57, 68, 81, 119

  Central America, 87, 132

  Dobzhansky, Theodosius, 175

  Chamberlin, T.C., 93, 138, 139, 143

  “Doomsday vault, ” 180

  Channeled Scablands, 144

  Durkheim, Émile, 176

  chemical weathering, 81–83, 172

  Dylan, Bob, 62, 77, 104

  Chicago, University of, 44, 122

  Chicxulub crater, 56–57, 61, 120–1

  earthquakes, 84–88; human-induced,

  Chile, 84

  99, 150

  China, 88, 90, 132

  East African Rift, 53

  climate change, anthropogenic, 94–95,

 

‹ Prev