Book Read Free

Oxygen

Page 54

by Nick Lane


  masking genetic damage in

  Pangaea 84

  polonium 108

  222, 321

  panspermia 126

  polymorphism 286, 287

  maturation in 232–3

  paper production 72

  Population Reference Bureau

  resonance 174, 186

  Paramecium 226–7

  233

  respiration

  Park, Jeen-Woo 264

  Porter, Roy 178

  aerobic 21, 32, 161, 167

  Partridge, Linda 247

  Porter, William 173

  evolution of 162–3

  Pasteur, Louis 18

  Poss, Kenneth 209

  ideal oxygen levels for 167,

  Pasteur point 165

  predation 72, 321

  169

  Pauling, Ava Helen 174

  Priestley, Joseph 2, 3, 5–6, 342

  mechanism of 163

  Pauling, Linus 173–6, 185, 187,

  primates 176, 233, 243

  anaerobic 21, 32, 161, 273

  189, 190, 211

  prions 194–5

  balance with photosynthesis,

  Pearl, Raymond 252–3, 275

  producers, see photosynthesis

  see photosynthesis

  Peck, Lloyd 102–104

  prokaryotes

  consumers 24

  Pennsylvania State University

  evolution of 157

  mechanism of 3, 5

  141

  properties of 151

  oxygen poisoning from

  Permian

  proteins

  112–13, 125

  carbon dioxide levels 83

  synthesis of 152

  respiratory genes 161–2

  INDEX • 373

  Rhee, Sue Goo 203

  Sendivogius, Michael 3–4

  sperm 225, 226, 237, 270

  rhesus monkeys 260–1, 262,

  senescence 216, 322; see also

  continuous production of 280

  300, 303, 305

  longevity

  mitochondria in 276–81

  ribonucleic acid, see RNA

  catastrophic 237–8, 239

  motility 279

  Richter, Christoph 264

  evolution of 220, 227

  Spiegelman’s monsters 31

  Ries crater 97

  programmed 215, 234, 235–6,

  Spiegelman, Sol 30–31

  RNA

  238, 269

  Stalin 315

  messenger 152

  stochastic 215, 234

  Stamler, Jonathan 206

  ribosomal 156–7, 162

  sex, see reproduction

  Stanford University 175, 254

  transfer 152

  sexes 13, 15, 277–81, 321

  Stanley, Leo L. 213

  Robinson, Jennifer 94, 95, 98

  Shakespeare 284

  stem cells 270, 272

  Rochester University 119

  Shark Bay, Australia 35

  sterols

  Ronsseus 178

  Sheffield, University of 82, 83,

  fossil biomarkers of 36, 52, 152,

  root nodules 165–6, 167

  91

  320

  Rose, Michael 231

  Shields, Graham 68

  oxygen requirement for 36

  Royal Institute of Natural

  signalling, biological 206–10

  stomata 82, 92

  Sciences, Belgium 101–2

  245–7, 295, 296

  stress

  Royal Institution 120

  silica 41, 93, 95, 98

  oxidative

  Royal Navy 10

  single nucleotide

  as a signal 128, 296–301, 12,

  Ruben, Samuel 135

  polymorphisms, see SNPs

  325–6

  Rubisco 80–1, 91, 134

  singlet oxygen 121

  definition of 127

  Russell, Bertrand 175

  Sklodowska, Marya 106

  effects on gene expression

  rust 38, 122

  Smith, James Lorraine 9

  299–301, 327

  Rutten, M. G. 77, 85, 98

  Smith, John Maynard 86, 221,

  in ageing and disease 210,

  Ruvkun, Gary 244

  236, 277

  292, 294, 299–301, 310–13

  Ryan, William 39

  Smith, Mark 304

  in Alzheimer’s disease 304,

  Rye, Rob 43

  Smithsonian Institution 54

  305, 308–10

  snowball Earth

  in cells 207

  S

  early Precambrian 47–9, 160,

  in infectious diseases 296–99

  320

  in photosynthesis 133, 145

  St Helena Bay, South Africa 40

  late Precambrian 60–3, 65 66,

  on early Earth 143, 148, 164,

  St Lawrence River 177

  68, 69, 74, 320

  169, 319

  Salk Institute, San Diego 217

  slushball Earth 63

  on Mars 129

  San Quentin prison 213

  SNPs 282, 286

  resistance to 244, 260, 274,

  Sapelo Island, Georgia 230

  Société de Biologie 213

  319

  Saraste, Matti 146, 161–3, 164,

  SOD 200–3, 204, 208, 210, 293,

  proteins 208, 219–20, 261, 295,

  168

  308, 316, 319

  299, 333

  Scheele, Carl 2, 3

  copper-zinc, see cytosolic

  resistance 244, 249, 250, 251,

  School of Hygiene and

  cytosolic 201, 202, 257–8,

  259, 260–1

  Tropical Medicine, London

  258 n.

  response 195, 205, 207–8, 211,

  328

  and Down syndrome 202,

  219–20

  Schrag, Dan 62

  304 n.

  stromatolites 35, 47, 49, 51, 52,

  Schweers, Olaf 304

  knockout mice 202, 318 n.

  152, 197

  Schweitzer, Albert 175

  manganese, see mitochondrial

  strontium isotopes 66–67

  science

  mitochondrial 201, 202, 257,

  Sturtian ice age 60, 63

  hypothesis 14, 341

  258 n.

  Sulfolobus acidocaldarius 160

  nature of 14–15, 341

  as a signal 210

  sulphate

  Scripps Institution of

  Sohal, Rajinder 257

  in evaporites 42

  Oceanography 32–33

  soma 225–6, 228

  in seawater 42, 49

  Scuba diving 9–10

  somatic mutation theory

  sulphate-reducing bacteria 39,

  scurvy

  225–6

  41, 52, 67–8, 70, 196–7

  cure for 178

  Sophocles 283

  sulphur

  lemon juice in 178

  Sorbonne, Paris 107

  as counterbalance to oxygen

  symptoms of 177

  Southern Denmark, University

  199, 205–6

  Seilacher, Dolf 56

  of 41

  isotopes 42–3, 67–8

  selection

  Southern Illinois, University of

  superoxide dismutase, see SOD

  group 221, 235–6

  97

  superoxide radicals 115, 125,

  individual 221–2, 235–6, 239

  Southern Methodist

  192, 200–3, 319

  selenium 280

  University, Dallas 257

  on Mars 129

  Sellafield, reprocessing plant

  SoxRS 207, 324

  production in body 123, 253
/>   111

  Spencer, Herbert 216

  properties of 118–19

  374 • INDEX

  Sutovsky, Peter 279

  US Environmental Protection

  volcanoes

  swamp plants 94

  Agency 117

  as source of atmospheric gases

  Sydney, University of 36

  US Geological Survey 87

  23

  Sykes, Richard 287, 291 n.

  Utah, University of 101

  as source of energy 132

  symbiosis 50, 51, 196

  Voronoff, Serge 214

  Szathmáry, Eörs 221, 277

  Szent-Györgyi, Albert 179

  V

  W

  van Niel, Cornelis 134

  T

  Varanger ice age 60, 69

  Wakeling, J. M. 77

  vegetables, see fruit

  Walcott, Charles Doolittle 54

  Tanaka, Masashi 334

  Vendian period 56

  Warrawoona, Australia 35

  tannins 204

  Vendobionts 56, 59, 66, 69, 70,

  water

  Taramelli, Donatella 330

  74, 133, 320

  irradiation of 113–15

  telomerase 269–71

  Venus, see Mars

  in photosynthesis 131–2, 135,

  telomeres 268–71

  Viking Mission 128–9

  137

  Teske, Andreas 67, 68

  Virginia 230

  Watson, Andrew 79, 92–3

  tetraploidy 223

  vitamin C 117, 172, 241, 311,

  Watson, James 174, 176

  Texas, University of 98

  317

  Weindruch, Richard 260, 300

  thalassaemia 189 n., 286, 327

  absorption 188

  Weismann, August 228, 235,

  Thermus thermophilus 127

  in anaemia 183

  239, 267, 275

  thiols

  antioxidant role 173, 182–3,

  Werner’s syndrome 258–9,

  oxidation of 206–7, 209,

  186, 191–3, 202, 204

  268, 293

  210–11

  ascorbyl radical 185

  Westendorp, Rudi 233

  S-nitrosylation of 206

  biosynthesis of 176–7

  Whitaker, R. H. 149

  in transcription factors 206–7

  in cancer 175–6, 189–90

  White, Owen 126

  thioredoxin 205, 207

  in carnitine synthesis 181, 318,

  Whittington, Harry 55

  Thiosphaera pantotropha 31

  339

  Widdel, Friedrich 41

  Three Mile Island,

  in collagen synthesis 181,

  Williams, George C. 239, 241,

  Pennsylvania 111

  183–4, 191

  295, 296

  thyroxine 340

  in common cold 175

  Wisconsin Regional Primate

  Tissenbaum, Heidi 244

  consumption of 177

  Research Center 260, 300

  Tonegawa, Susumu 209

  and copper 184–6

  Wisconsin, University of 59

  trachea, see insects

  dehydroascorbate 185–6, 191,

  Woese, Carl 155–7

  transcription factors 206–8,

  193

  Wolbach, Wendy 97

  210, 245, 295

  as an electron donor 184–6

  Woodall, John 178

  transplantation, organ 328

  excretion 179–80, 188

  worms 56–57, 149; see also

  tsunami, megawave 97

  and Fenton reaction 186–7, 189

  nematodes

  tumour necrosis factor 261

  in haemochromatosis 188–9

  Turke, Paul 296

  intravenous 175–6, 190

  X

  and iron 184–6

  U

  isolation of 179

  X chromosome 225

  in lassitude 181

  Xenopus laevis 281

  ubiquitin 279

  mechanism of 183, 190

  ultraviolet radiation 25, 73,

  megadose 175, 187–8, 189,

  Y

  259

  192 n.

  splitting water 129, 141, 145,

  in neuro-endocrine functions

  Yale University 56

  148, 164, 169, 318–9, 320

  182, 191, 318

  Yashin, Anatoli 332–3

  University College, London

  neutrophils 182–3, 191–3

  Y chromosome 225

  215

  pro-oxidant effects 186–7,

  yeast, see fermentation

  uraninite 44

  188–190, 192

  Yellowstone National Park

  uranium 108

  recommended daily allowance

  160

  isotopes 44, 46

  179–81

  yoghurt 213

  natural reactors 44, 46

  supplementation 172, 180

  urea 228

  synthesis of 179

  Z

  Urey, Harold 17–18

  vitamin E 117, 172, 186, 192,

  uric acid 205

  193, 204, 306, 309

  Zeno, paradox of 86

  Document Outline

  Cover

  Contents

  1 Introduction: Elixir of Life — and Death

  2 In the Beginning: The Origins and Importance of Oxygen

  3 Silence of the Aeons: Three Billion Years of Microbial Evolution

  4 Fuse to the Cambrian Explosion: Snowball Earth, Environmental Change and the First Animals

  5 The Bolsover Dragonfly: Oxygen and the Rise of the Giants

  6 Treachery in the Air: Oxygen Poisoning and X-Irradiation: A Mechanism in Common

  7 Green Planet: Radiation and the Evolution of Photosynthesis

  8 Looking for LUCA: Last Ancestor in an Age Before Oxygen

  9 Portrait of a Paradox: Vitamin C and the Many Faces of an Antioxidant

  10 The Antioxidant Machine: A Hundred and One Ways of Living with Oxygen

  11 Sex and the Art of Bodily Maintenance: Trade-offs in the Evolution of Ageing

  12 Eat! Or You’ll Live Forever: The Triangle of Food, Sex and Longevity

  13 Gender Bender: The Rate of Living and the Need for Sexes

  14 Beyond Genes and Destiny: The Double-Agent Theory of Ageing and Disease

  15 Life, Death and Oxygen: Lessons From Evolution on the Future of Ageing

  Further Reading

  Glossary A

  B

  C

  D

  E

  F

  G

  H

  I

  J

  L

  M

  N

  O

  P

  R

  S

  T

  U

  Y

  Index A

  B

  C

  D

  E

  F

  G

  H

  I

  J

  K

  L

  M

  N

  O

  P

  R

  S

  T

  U

  V

  W

  X

  Y

  Z

 

 

 
re-buttons">share



‹ Prev