Book Read Free

Neanderthal Man

Page 32

by Pbo, Svante


  Evolutionary biology, 42–43, 63–65

  Evolutionary models. See Multiregional hypothesis of human origins; Out-of-Africa hypothesis

  Excoffier, Laurent, 98, 193–194, 199

  Extinct mammals, 9–10, 52

  clean room procedures, 87–88

  DNA extraction from bone samples, 55

  ground sloth, 63–67

  See also Cave-bear bones; Mammoth remains; Quagga DNA; Thylacinus cynocephalus

  Fluorescence in mummies, 27–28, 30, 105–106

  Forensic science, 67

  454 Life Sciences, 109, 111–114, 116–120, 122–124, 126–127, 134–135, 140, 144, 153, 159–163

  FOXP2 gene, 252–253

  Fu, Qiaomei, 147(fig.), 228–231, 233

  Fuhlrott, Johann Carl, 129

  Fundamentalist Christians, 221

  Gannon, Frank, 135

  Gay rights, 36–37

  Gee, Henry, 236, 238

  Gene flow

  chromosome 17 evidence, 166

  comparing Neanderthal, African, and European genomes, 174

  Gene flow (continued)

  Denisovans, 242, 246–247, 249

  searching present-day genomes, 191–195

  Trinkaus critique of findings, 220–221

  Genetic diversity in North American tribal groups, 44

  Genetic variation

  among Neanderthals, 79

  determining Neanderthals’ contribution to the modern genome, 171–173

  evidence of Neanderthal-modern human gene flow, 166

  mapping the Neanderthal genome, 156

  out-of-Africa hypothesis, 91–94

  social implications of Neanderthal gene flow findings, 200

  Gorillas

  common ancestor with humans and chimpanzees, 94

  competition for reproduction, 212

  genetic variation, 79

  See also Apes; Chimpanzees

  Gorjanovic-Kramberger, Dragutin, 76

  Green, Richard E. “Ed,” 115, 159–160, 169

  AAAS conference, 165–166

  background, 111–112

  common ancestors of Neanderthal and San, 186

  comparing Neanderthal, modern human and ape genomes, 181–182

  comparing Neanderthal and human reference genome, 124–125

  data-handling programs, 162–163

  Denisova genome, 243

  estimating DNA contamination, 179–181

  evidence of Neanderthal-modern human gene flow, 166–167, 191–192

  454 process, 117, 119

  mapping the DNA, 153–158

  Newcomb Cleveland Prize, 224–225

  patent controversy, 203

  publishing the findings, 217–218, 220

  transplantation antigens, 224

  Greenwood, Alex, 99–101, 173

  Ground sloths, 63–65, 65(fig.), 66–67, 105

  Grunert, Stephan, 31–32

  Gušić, Ivan “Johnny,” 138, 139(fig.)

  Hagelberg, Erika, 55

  Hair, Eskimo, 215

  Handt, Oliva, 52, 53(fig.), 54–55, 67–70

  Hawks, John, 220

  Heinze, Anja, 147(fig.)

  Herak, Milan, 130

  Prichard, Hesketh, 63

  Heterozygous position, 102–104

  Higuchi, Russell, 34, 40–41, 51

  Hofreiter, Michael, 113

  Holthoer, Rostislav, 24–25, 27–29, 31, 38–39, 227

  Homo altaiensis, 238

  Homo erectus, 229

  Homo heidelbergensis, 229, 238

  Höss, Matthias, 52, 53(fig.), 54–55, 65, 101, 140

  Hublin, Jean-Jacques, 90, 197

  Human Diversity Panel, 246

  Human evolutionary history, 43–44, 52

  Human genome, 33, 38

  Human Genome Project, 107

  Human origins hypotheses, 41–42. See also Middle East scenario; Multiregional hypothesis of human origins; Out-of-Africa hypothesis

  Human reference genome

  as template for Neanderthal

  sequences, 118

  indicating contamination of Neanderthal sequences, 124–127

  mapping gene flow, 192–195

  mapping the Neanderthal genome, 153–155

  reconstructing Neanderthal mtDNA, 160

  sequencing modern genomes, 185–188

  Hybrid molecules, 45–46, 60

  Ice Man remains, 68–71

  Illumina company, 161–164, 166, 169, 176, 181

  Imitation as human behavior, 206

  Immune system, 24

  Incomplete lineage sorting, 247

  Independent verification, 14–18

  Insect DNA, 57–58

  Interbreeding

  comparing Neanderthal and

  modern human genomes, 182–183

  creationist view of, 221–222

  Denisovan-Neanderthal interaction, 242–243, 251–252

  mapping the five modern

  genomes, 188–195

  Neanderthal-modern human link, 96–97

  replacement crowd, 198–199

  SNPs as indicators of, 173–177

  See also Sexual reproduction

  Jäckle, Herbert, 47, 50, 120–121

  Jeffreys, Alec, 25

  Jeune Afrique magazine, 222

  Johnson, Philip, 154, 166, 171, 181

  Journal of Archaeological Science, 32

  Journal of Molecular Evolution, 43

  Jumping PCR, 46, 69–70

  Kaessmann, Henrik, 91–94, 108–109

  Kaiser Wilhelm Society, 81–82

  Kangaroo rats, 42–43, 43(fig.)

  Kelso, Janet, 147(fig.), 153–154, 209–213

  Kilger, Christian, 202–203

  Kim, Sung, 150, 160

  Kircher, Martin, 147(fig.), 162, 165–166, 202–203, 209–213, 239, 245

  Klein, Richard, 190

  Knauer, Felix, 56

  Krapina Cave collection, 76–77, 132–133

  Krause, Johannes, 147(fig.)

  access to Vindija Cave remains, 133–134

  background, 129–130

  comparing Neanderthal mtDNA sequences with Denisova sequences, 229–233

  DNA from Vindija Cave remains, 136–141

  454 process, 117, 119

  Okladnikov Cave remains, 227

  publishing the findings, 218

  pyrosequencing, 114

  sequencing the nuclear genome, 238–240

  toasts, 234–235

  Krings, Matthias, 1, 8–12, 16, 18, 21, 74–76, 78–79

  Kučan, Željko, 138, 139(fig.)

  Kudaravalli, Sridhar, 124

  Lachmann, Michael, 170

  Lalueza-Fox, Carles, 137

  Lander, Eric, 164–166

  Language development, 207, 252–253

  Language groups, sampling for genetic diversity, 93

  Larhammar, Dan, 34

  Lawrence Berkeley National Laboratory, 109–110, 113–115, 121–122

  Leaky replacement, 248

  Learning as human behavior, 206–207

  Lenardic, Jadranka, 130

  Lewin, Benjamin, 18

  Limestone caves, 76–78

  Lindahl, Tomas, 18, 39–40, 51–52, 58, 76

  Lucy, 4

  Magnolia latahensis, 56–57

  Maillard reaction, 106

  Major histocompatibility complex (MHC), 223–224

  Malez, Mirko, 76–77, 130–131

  Mammoth remains

  nuclear DNA extraction, 101–103, 111–113

  pyrosequencing, 115

  SNPs, 173

  tracing evolutionary history, 55–56

  “Marco Polo Neanderthals”, 183

  Maričić, Tomislav “Tomi,” 137–138, 144–146, 147(fig.), 166, 179

  Marsupials. See Thylacinus cynocephalus

  Matzke, Nicholas J., 221

  Max Planck Society, 81–90, 120–121, 155, 202–203

  McLean, Corey, 219–220

  Melanesia, 24
5, 247, 249–252

  Mengele, Josef, 81–82

  Methyl groups, 148

  Meyer, Matthias, 147(fig.), 251

  Mezmaiskaya Cave, Russia, 78–79, 136

  Middle East scenario, 189–191, 195, 197–200

  Migration, 41–42, 183

  Mitochondria, 59–60

  Mitochondrial DNA (mtDNA), 1–2,

  4

  BYU data, 59

  Croatian samples, 78–79

  Denisova Cave remains, 228–231, 240–244

  determining Neanderthals’ contribution to the modern genome, 172

  genetic variation among various Neanderthals, 95–97

  human-ape link, 99

  in animal droppings, 105–107

  independent verification, 14–18

  inheritance mechanism, 19–20

  kangaroo rats, 42–43

  limitations on view of genetic history, 19–20

  Mitochondrial Eve, 14

  multiregional model, 91

  mutations, 12–14

  Mylodon darwinii, 65

  Native American remains, 71

  Neanderthal type specimen and other Neanderthal specimens, 75–76

  Neanderthal-modern human link, 96–98

  nuclear DNA from mammoth bones, 101–103

  Oetzi, the Ice Man, 69–70

  Okladnikov Cave bone fragment, 228

  PCR process, 8–12

  quagga DNA, 34

  reconstruction of Neanderthal mtDNA, 11(fig.), 159–168

  SNPs as indicators of interbreeding, 174

  tracing a common ancestor, 13(fig.)

  Mitochondrial Eve, 13(fig.), 14–15, 88

  Modern humans

  cataloging genetic changes after Neanderthal-modern human separation, 209–213

  cloning mummy DNA, 33

  cognitive development, 205–207

  common ancestor of apes and, 93(fig.)

  Denisova tooth morphology, 241

  Denisovan genome and, 242

  Denisovans, Neanderthals, and, 243–244, 247–248

  genome analysis of apes and, 219

  Middle East scenario, 197–198

  mtDNA comparisons with ancient DNA, 10, 12

  mtDNA variation, 75–76

  potential for Neanderthal offspring, 200–203

  replacement crowd, 198–200

  technical development, 208

  See also Asians, modern; Europeans, modern

  Molar, Neanderthal, 235, 236(fig.), 240–242, 245

  Molecular clock, 66

  Monaco, Tony, 252–253

  Monogamy, 212

  Morphological features, 66, 240–241, 245

  Mullikin, Jim, 173–174, 183

  Mullis, Kary, 8, 37, 39–40

  Multiregional hypothesis of human origins, 20–21, 91–98, 188–189, 220

  Mummies

  blue fluorescence in, 27–28, 30, 105–106

  cartilage samples, 54–55

  contamination of DNA data, 51–52

  DNA extraction and cloning, 25–35

  DNA survival and decay, 7

  Native American remains, 68, 71

  Oetzi the Ice Man, 68–71

  PCR process, 37–40

  Mutations

  cataloging genetic changes after Neanderthal-modern human separation, 209–213

  derived alleles, 157

  mapping convergent evolution,

  66

  Neanderthal contributions to modern European genome, 166–167

  Neanderthal interbreeding with early modern humans, 192

  obstacle to reconstructing genetic history, 12–14

  putative dinosaur DNA, 59–60

  studying nuclear DNA variation, 92–93

  Myers, Gene, 111

  Mylodon darwinii, 63–65, 65(fig.)

  Native Americans

  cannibalism, 131

  Native Americans (continued)

  comparing modern genome with, 68, 71

  Denisovan genome and, 245

  DNA data from preserved skeletons, 43–44

  Nature Genetics journal, 79, 94

  Nature magazine, 18, 51–52

  contamination of data, 127, 150–151, 157–158, 160

  Denisova Cave findings, 236–238, 242, 248–249

  DNA in amber, 58

  DNA retrieval from animal droppings, 56

  454 paper, 122

  human-chimpanzee joining and separation, 170

  mammoth data, 55

  Mezmaiskaya Cave Neanderthal remains, 78–79

  Neanderthal genome paper, 164–165

  quagga data, 34–35, 41

  Siberian Neanderthal data, 228

  thylacine data, 45

  Nazi Germany, 81–83

  Neander Valley, Germany, 2–3, 135–136

  Neanderthal Genome Analysis Consortium, 175, 241. See also Neanderthal genome project

  Neanderthal genome project

  analyzing the results, 179–184

  cataloging genetic changes after Neanderthal-modern human separation, 209–213

  clean room procedures, 87–88

  collaboration efforts, 134–135

  contamination of data, 95–97

  Denisovan mapping, 251–253

  determining Neanderthals’ contribution to the modern genome, 171–173

  El Sidrón bones, 136–137

  European and African connections to Neanderthal genome, 176–177

  explaining cognitive and technological development, 208–209

  funding, 120–121

  human reference genome and present-day human genome, 185–187

  Illumina data, 164–166

  inconsistencies with human reference genome, 124–127

  interbreeding question, 182–183

  mapping the genome, 153–158, 164–167

  Mezmaiskaya Cave bones, 136

  Middle East scenario, 189–191

  minimizing bacterial DNA, 146–151

  minimizing DNA loss in sampling, 143–146

  mtDNA reconstruction, 159–160

  mtDNA variation, 75–76

  multiregional-continuity model of human origins, 91

  Neander Valley bones, 135–136

  Neanderthal interbreeding with early modern humans, 190–195

  obtaining bone samples, 72–75, 129–134

  obtaining Vindija bones, 137–141

  people and processes, 117–119, 121–123, 169–171

  publication of findings, 215–225

  SNP analysis, 173–177

  technical improvements,

  127–128

  Neanderthals

  explaining differences between modern humans and, 208

  first discovered remains and early research, 2–3

  New England Biolabs, 148

  Newcomb Cleveland Prize, 224–225

  Nielsen, Rasmus, 191–192

  Noonan, Jim, 124, 127

  Nordborg, Magnus, 96

  N-phenacylthiazolium bromide (PTB), 106

  Nuclear DNA

  animal droppings, 106–107

  cave-bear bones, 99–101, 103–104, 109–113

  Denisova Cave remains, 231, 239––240

  dinosaur DNA, 60

  mammoth bones, 101–103, 111–113

  misplaced mitochondrial fragments, 59

  Nuclear genome

  Denisova Cave remains, 233, 238, 241–242

  determining Neanderthals’ contribution to the modern genome, 98–99, 172

  human-ape link, 94, 99

  multiregional and out-of-Africa models of human origins,

  91–92

  SNPs as indicators of interbreeding, 174

  Nucleotides, 1–2

  Nuu-Chah-Nulth (First Nations group), 44

  Nyrén, Pål, 107–109

  Oetzi, the Ice Man, 68–71

  Oetztal, Austria, 68–71

  Offspring

  chromosome genealogy, 185–187

  determining Neanderthals’ contribution
to the modern genome, 172–173, 182–183

  evidence of Neanderthal-modern human gene flow, 98–99, 189, 200–203

  primates’ competition for reproduction, 212

  SNPs as indicators of interbreeding, 173–177

  social dominance and gene flow, 193–194

  taxonomic classifications, 237–238

  See also Interbreeding; Sexual reproduction

  Okladnikov Cave, Siberia, 227

  Old-earth creationists, 221

  1,000 Genomes Project, 209–210, 252

  Out-of-Africa hypothesis, 15, 19–21, 34, 88, 91, 188–189, 237

  Owen, Richard, 63

  Papuans, 183, 185–186, 188–189, 194–195, 242–247

  Parham, Peter, 223–224

  Patents, 202–203

  Patterson, Nick, 173

  background, 170–171

  comparing Denisova and modern genomes, 244–246

  comparing Neanderthal, African, and Chinese genomes, 177

  comparing Neanderthal, African, and European genomes, 174

  Denisova Cave remains, 241, 243, 246

  evidence of Neanderthal-modern human gene flow, 190

  mapping modern genomes, 187

  Paunović, Maja, 77–78, 130

  PCR. See Polymerase chain reaction

  Peking Man, 4, 20

  Penile spine deletion, 219

  Permafrost remains, 102–104, 115, 215, 239

  Pettersson, Per, 23–24, 26, 34

  Plants, DNA sequencing of, 56–58

  Playboy magazine, 222

  Poinar, George, 58

  Poinar, Hendrik, 58, 105–106, 115, 239

  Pointing as human behavior, 205–206

  Polymerase chain reaction (PCR), 8–12

  automation of, 40

  contamination of samples, 50–56

  criteria of authenticity, 51–52

  dubious results, 61

  importance of, 37

  improving efficiency of, 144–145

  independent verification, 14–16

  inhibiting nuclear DNA extraction, 100–101

  jumping PCR, 46, 69–70

  Oetzi, the Ice Man, 69–70

  reconstruction of Neanderthal mtDNA, 11(fig.)

  technical intricacies of DNA retrieval, 45–46

  technological advances, 109, 143

  thylacine data, 39–40, 44–45

  Population geneticists, 169–170

  Population split, 187

  Possnert, Göran, 31

  Primorac, Dragan, 135

  Pritchard, Jonathan, 124

  Proceedings of the National Academy of Sciences, 45, 115

  Proteins, genetic changes in, 210–213

  Prüfer, Kay, 147(fig.), 149

  Ptak, Susan, 127, 170

  PTB. See N-phenacylthiazolium bromide (PTB)

  Pyrosequencing (company), 108–109

  Pyrosequencing (process), 107–108, 111–116

  Quagga DNA, 34, 40–41

 

‹ Prev