Book Read Free

Neanderthal Man

Page 33

by Pbo, Svante


  Racism, 202

  Radioactive phosphorus, 144–146

  Radovčić, Jakov, 130, 132–135, 137–138

  Rasilla, Marco de la, 136–137

  “Reasons to Believe” ministry, 221

  Recombination, 186

  Reich, David, 173, 182, 242(fig.)

  background, 170

  comparing Neanderthal, African, and Chinese genomes, 177

  comparing Neanderthal, African, and European genomes, 174–176

  Denisova Cave remains, 241, 246–247

  evidence of Neanderthal-modern human gene flow, 190, 192–193, 251

  mapping modern genomes, 187

  Newcomb Cleveland Prize, 224–225

  publishing the findings, 217–218

  Repetitive DNA sequences, 118

  Replacement crowd, 213, 253

  leaky replacement, 248

  magnitude of Neanderthal contribution to, 201–202

  MHC gene variability, 224

  movement and technological development, 208

  origins and movement, 198–199

  Reproduction. See Interbreeding; Offspring; Sexual reproduction

  Restriction enzymes, 149

  Ribosomal RNA gene, 101–102, 104

  RNA splicing, 112

  Rogers, Jane, 161–162

  Rosas, Antonio, 137

  Ross, Hugh, 221

  Rothberg, Jonathan, 109, 111–112, 117–120, 122, 161

  Rubin, Edward M., 124, 184, 216

  contamination of data, 126–127, 150, 155

  Denisova Cave remains, 233–234, 239, 241

  ending the collaboration, 128

  friction with, 113–115

  Neanderthal bacterial library, 121–122

  preliminary results, 116

  pyrosequencing, 109–111

  Rudan, Pavao, 133–135, 138, 139(fig.)

  San genome, 185, 188, 242–243

  Sanger, Fred, 107

  Sanger Institute, 161–162

  Sanger sequencing method, 107–108, 110

  Sarich, Vincent, 95

  Schaffner, Walter, 36, 38

  Schmitz, Ralf, 1, 17–18, 73, 123–124, 135–136

  Science magazine, 18, 21, 115

  Denisova Cave findings, 236

  dinosaur DNA, 59–60

  DNA from animal droppings, 105

  MHC gene variability, 224

  Neanderthal genome paper, 164–165, 216–218

  Oetzi the Ice Man, 70

  out-of-Africa model, 94

  plant DNA, 56

  potential contamination of data set, 150

  pyrosequencing, 110

  Rubin’s cloning paper, 122

  Second-generation sequencing, 108

  Serre, David, 95–97, 114

  Sex chromosomes, 179–181, 243

  Sexual orientation, 36–37, 88–89

  Sexual reproduction

  biological obstacles to, 172–173

  chromosome genealogy, 185–186

  comparing Neanderthal and modern human genomes, 182–183

  Denisovans, 248

  determining human origins, 42

  genome analysis of modern humans and apes, 219

  mtDNA contribution to modern humans, 96

  social dominance patterns, 19

  sperm motility, 211–212

  See also Interbreeding

  Shunkov, Michael, 232–233, 250

  Side fractions, 144–146

  Silica extraction method, 55

  Simons, Kai, 85

  Single nucleotide polymorphism (SNP), 102–103, 173–177, 183, 187, 191, 243–244

  Single-copy genes, 103–104, 118

  Skin, genetic changes in, 212–213

  Slatkin, Montgomery “Monty,” 154, 191, 242(fig.)

  background, 171

  comparing Denisova and modern genomes, 245

  Denisova Cave remains, 241

  Denisovan genome findings, 247

  evidence of Neanderthal-modern human gene flow, 195

  Sloths, 63–65, 65(fig.), 66–67, 105

  Social development, 206–207

  Soft tissue samples, 67

  Solexa company, 161–162

  Sperm cells, 19–20, 60

  Sperm motility, 211–212

  Staatlische Museen zu Berlin, 28–29, 38–39

  Stasi (East German secret police), 39

  Stenzel, Udo, 147(fig.), 162, 169

  AAAS conference, 165–166

  comparing Denisova and Neanderthal genomes, 243–244

  Denisova Cave remains, 241–242

  evidence of Neanderthal-modern human gene flow, 166

  mapping DNA, 153–155, 181, 208

  patent controversy, 202–203

  Stetter, Karl, 46

  Stock, Günter, 134

  Stone, Anne, 15–18

  Stoneking, Mark, 15–17, 19, 88–91, 247

  Stringer, Chris, 20, 190

  Super-old DNAs, 57–58

  Sykes, Bryan, 70

  Taxonomy, 49, 237

  Technology, changes over millennia, 208

  Termite data, 57–58

  Theory of mind, 205–206

  Thomas, Kelley, 42

  Thomas, Richard, 44

  Thylacinus cynocephalus, 38–40, 44–45, 64, 66

  Tomasello, Mike, 83–85, 205–206

  Tool culture, 197–198, 250

  Translocated human mtDNA, 60

  Transplantation antigens, 24, 51, 223–224

  Tree sloths, 63–65, 65(fig.), 66

  Tribal groups, genetic diversity in,

  44

  Trinkaus, Erik, 95, 97, 190, 220–221

  Turkana Boy, 4

  23andMe, 203

  UC Irvine, 56–57

  Uhlén, Mathias, 107–109

  Uracil, 5–6

  Venter, Craig, 111, 118, 192–193

  Verna, Christine, 138

  Vigilant, Linda, 41, 88–91, 163–164, 201

  Villablanca, Francis, 42

  Vindija Cave and remains, 77(fig.), 175

  cannibalized remains, 131–132, 131(fig.)

  cave-bear and human bones, 76–77, 99–101

  contamination of cave-bear DNA, 97

  evidence of Neanderthal-modern human gene flow, 194

  increasing the proportion of Neanderthal DNA, 146–151

  Mezmaiskaya Cave Neanderthal remains, 79

  obstacles to accessing the specimens, 129–130, 132–133, 137

  Viola, Bence, 231, 233, 235, 240–241

  Vjesnik newspaper, 138

  von Willebrand factor gene (vWF), 102, 106

  Wall, Jeffrey, 150, 155–156, 160

  Ward, Ryk, 44, 71

  Weapons, 198

  White, Tim, 130–131

  Wild, Barbara, 36–37

  Willerslev, Eske, 215, 239

  Wilson, Allan, 13–15, 19–20, 34–35, 37–38, 40–41, 51, 88, 94–95, 188

  Wired magazine, 128

  Wolpoff, Milford, 21, 190, 220

  Woodward, Scott, 58–60

  World Congress of Genetics (Berlin), 164

  World War II, 49, 81–83

  X chromosome data, 99, 179–181, 243

  X-Woman Consortium, 241–243, 245–246

  Y chromosome data, 179–181, 243

  Yeast, 58

  Yoruba, 188

  Young-earth creationists, 221

  Zahn, Laura, 165, 224–225

  Zhai, Weiwei, 191

  Zischler, Hans, 59

  Zoology, 49–50

  {1} R. L. Cann, Mark Stoneking, and Allan C. Wilson, “Mitochondrial DNA and human evolution,” Nature 325, 31–36 (1987).

  {2} M. Krings et al., “Neandertal DNA sequences and the origin of modern humans,” Cell 90, 19–30 (1997).

  {3} S. Pääbo, Über den Nachweis von DNA in altägyptischen Mumien,” Das Altertum 30, 213–218 (1984).

  {4} S. Pääbo, “Preservation of DNA in ancient Egyptian mummies,” Journal of Archaeological Sciences 12, 411–417 (1985).
/>
  {5} S. Pääbo, “Molecular cloning of ancient Egyptian mummy DNA,” Nature 314, 644–645 (1985).

  {6} S. Pääbo and A. C. Wilson, “Polymerase chain reaction reveals cloning artefacts,” Nature 334, 387–388 (1988).

  {7} R. L. Cann, Mark Stoneking, and A. C. Wilson, “Mitochondrial DNA and human evolution,” Nature 325, 31–36 (1987).

  {8} W. K. Thomas, S. Pääbo, and F. X. Villablanca, “Spatial and temporal continuity of kangaroo-rat populations shown by sequencing mitochondrial-DNA from museum specimens,” Journal of Molecular Evolution 31, 101–112 (1990).

  {9} J. M. Diamond, “Old dead rats are valuable,” Nature 347, 334–335 (1990).

  {10} S. Pääbo, J. A. Gifford, and A. C. Wilson, “Mitochondrial-DNA sequences from a 7,000-year-old brain,” Nucleic Acids Research 16, 9775–9787 (1988).

  {11} R. H. Thomas et al., “DNA phylogeny of the extinct marsupial wolf,” Nature 340, 465–467 (1989).

  {12} S. Pääbo, “Ancient DNA—Extraction, characterization, molecular-cloning, and enzymatic amplification,” Proceedings of the National Academy of Sciences USA 86, 1939–1943 (1989).

  {13} S. Pääbo, R. G. Higuchi, and A. C. Wilson, “Ancient DNA and the polymerase chain reaction,” Journal of Biological Chemistry 264, 9709–9712 (1989).

  {14} G. Del Pozzo and J. Guardiola, “Mummy DNA fragment identified,” Nature 339, 431–432 (1989).

  {15} S. Pääbo, R. G. Higuchi, and A. C. Wilson, “Ancient DNA and the polymerase chain reaction,” Journal of Biological Chemistry 264, 9709–9712 (1989).

  {16} T. Lindahl, “Recovery of antediluvian DNA,” Nature 365, 700 (1993).

  {17} E. Hagelberg and J. B. Clegg, “Isolation and characterization of DNA from archaeological bone,” Proceedings of the Royal Society B 244:1309, 45–50 (1991).

  {18} M. Höss and S. Pääbo, “DNA extraction from Pleistocene bones by a silica-based purification method,” Nucleic Acids Research 21:16, 3913–3914 (1993).

  {19} M. Höss and S. Pääbo, “Mammoth DNA sequences,” Nature 370, 333 (1994); Erika Hagelberg et al., “DNA from ancient mammoth bones,” Nature 370, 333–334 (1994).

  {20} M. Höss et al., “Excrement analysis by PCR,” Nature 359, 199 (1992).

  {21} E. M. Golenberg et al., “Chloroplast DNA sequence from a Miocene Magnolia species,” Nature 344, 656–658 (1990).

  {22} S. Pääbo and A. C. Wilson, “Miocene DNA sequences—a dream come true?” Current Biology 1, 45–46 (1991).

  {23} A. Sidow et al., “Bacterial DNA in Clarkia fossils,” Philosophical Transactions of the Royal Society B 333, 429–433 (1991).

  {24} R. DeSalle et al., “DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications,” Science 257, 1933–1936 (1992).

  {25} R. J. Cano et al., “Enzymatic amplification and nucleotide sequencing of DNA from 120–135-million-year-old weevil,” Nature 363, 536–538 (1993).

  {26} H. N. Poinar et al., “DNA from an extinct plant,” Nature 363, 677 (1993).

  {27} T. Lindahl, “Instability and decay of the primary structure of DNA,” Nature 362, 709–715 (1993).

  {28} S. R. Woodward, N. J. Weyand, and M. Bunnell, “DNA sequence from Cretaceous Period bone fragments,” Science 266, 1229–1232 (1994).

  {29} H. Zischler et al., “Detecting dinosaur DNA,” Science 268, 1192–1193 (1995).

  {30} H. Prichard, Through the Heart of Patagonia (New York: D. Appleton and Company, 1902).

  {31} M. Höss et al., “Molecular phylogeny of the extinct ground sloth Mylodon darwinii,” Proceedings of the National Academy of Sciences USA 93, 181–185 (1996).

  {32} O. Handt et al., “Molecular genetic analyses of the Tyrolean Ice Man,” Science 264, 1775–1778 (1994).

  {33} O. Handt et al., “The retrieval of ancient human DNA sequences,” American Journal of Human Genetics 59:2, 368–376 (1996).

  {34} In fact, even at this writing, several groups are using the PCR to study mtDNA from human archaeological remains without describing clearly how they distinguish contaminating DNA sequences from endogenous ones. Some of the sequences they determine are almost certainly correct, but others are almost equally certainly incorrect.

  {35} I. V. Ovchinnikov et al., “Molecular analysis of Neanderthal DNA from the northern Caucasus,” Nature 404, 490–493 (2000).

  {36} M. Krings et al., “A view of Neandertal genetic diversity,” Nature Genetics 26, 144–146 (2000).

  {37} H. Kaessmann et al., “DNA sequence variation in a non-coding region of low recombination on the human X chromosome,” Nature Genetics 22, 78–81 (1999); H. Kaessmann, V. Wiebe, and S. Pääbo, “Extensive nuclear DNA sequence diversity among chimpanzees,” Science 286, 1159–1162 (1999); H. Kaessmann et al., “Great ape DNA sequences reveal a reduced diversity and an expansion in humans,” Nature Genetics 27, 155–156 (2001).

  {38} D. Serre et al., “No evidence of Neandertal mtDNA contribution to early modern humans,” PLoS Biology 2, 313–217 (2004).

  {39} M. Currat and L. Excoffier, “Modern humans did not admix with Neandertals during their range expansion into Europe,” PLoS Biology 2, 2264–2274 (2004).

  {40} A. D. Greenwood et al., “Nuclear DNA sequences from Late Pleistocene megafauna,” Molecular Biology and Evolution 16, 1466–1473 (1999).

  {41} H. N. Poinar et al., “Molecular coproscopy: Dung and diet of the extinct ground sloth Nothrotheriops shastensis,” Science 281, 402–406 (1998).

  {42} S. Vasan et al., “An agent cleaving glucose-derived protein cross-links in vitro and in vivo,” Nature 382, 275–278 (1996).

  {43} H. Poinar et al., “Nuclear gene sequences from a Late Pleistocene sloth coprolite,” Current Biology 13, 1150–1152 (2003).

  {44} J. P. Noonan et al., “Genomic sequencing of Pleistocene cave bears,” Science 309, 597–600 (2005).

  {45} M. Stiller et al., “Patterns of nucleotide misincorporations during enzymatic amplification and direct large-scale sequencing of ancient DNA,” Proceedings of the National Academy of Sciences USA 103, 13578–13584 (2006).

  {46} H. Poinar et al., “Metagenomics to paleogenomics: Large-scale sequencing of mammoth DNA,” Science 311, 392–394 (2006).

  {47} See note 5 above.

  {48} J. P. Noonan et al., “Sequencing and analysis of Neandertal genomic DNA,” Science 314, 1113–1118 (2006); R. E. Green et al., “Analysis of one million base pairs of Neanderthal DNA,” Nature 444, 330–336 (2006).

  {49} After our Nature publication, we learned that it should more appropriately be called Vi-33.16, according to a more recent numbering system.

  {50} R. W. Schmitz et al., “The Neandertal type site revisited: Interdisciplinary investigations of skeletal remains from the Neander Valley, Germany,” Proceedings of the National Academy of Sciences USA 99, 13342–13347 (2002).

  {51} A. W. Briggs et al., “Patterns of damage in genomic DNA sequences from a Neandertal,” Proceedings of the National Academy of Sciences USA 104, 14616–14621 (2007).

  {52} T. Maricic and Svante Pääbo, “Optimization of 454 sequencing library preparation from small amounts of DNA permits sequence determination of both DNA strands,” BioTechniques 46, 5157 (2009).

  {53} J. D. Wall and Sung K. Kim, “Inconsistencies in Neandertal genomic DNA sequences,” PLoS Genetics 10:175 (2007).

  {54} A. W. Briggs et al., “Patterns of damage in genomic DNA sequences from a Neandertal,” Proceedings of the National Academy of Sciences USA 104, 14616–14621 (2007).

  {55} R. E. Green et al., “The Neandertal genome and ancient DNA authenticity,” EMBO Journal 28, 2494–2503 (2009).

  {56} R. E. Green et al., “A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing,” Cell 134, 416–426 (2008).

  {57} N. Patterson et al., “Genetic evidence for complex speciation of humans and chimpanzees,” Nature 441, 1103–1108 (2006).

  {58} M. Tomasello, Origins of Human Communication (Cambridge, MA: MIT Press).

  {59}
R. E. Green et al., “A draft sequence of the Neandertal genome,” Science 328, 710–722 (2010).

  {60} My translation.

  {61} L. Abi-Rached et al., “The shaping of modern human immune systems by multiregional admixture with archaic humans,” Science 334, 89–94 (2011).

  {62} J. Krause et al., “Neanderthals in central Asia and Siberia,” Nature 449, 902–904 (2007).

  {63} J. Krause et al., “The complete mtDNA of an unknown hominin from Southern Siberia,” Nature 464, 894–897 (2010).

  {64} D. Reich et al., “Genetic history of an archaic hominin group from Denisova Cave in Siberia,” Nature 468, 1053–1060 (2010).

  {65} S. Sankararaman et al., “The date of interbreeding between Neandertals and modern humans,” PLoS Genetics 8:1002947 (2012).

  {66} M. Meyer, “A high coverage genome sequence from an archaic Denisovan individual,” Science 338, 222–226 (2012).

  {67} W. Enard, et al., “Molecular evolution of FOXP2, a gene involved in speech and language,” Nature 418, 869–872 (2002).

  {68} W. Enard et al. “A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice,” Cell 137, 961–971 (2009).

  {69} J. Krause et al., “The derived FOXP2 variant of modern humans was shared with Neandertals,” Current Biology 17, 1908–1912 (2007).

 

 

 


‹ Prev