Book Read Free

Works of Johann Wolfgang von Goethe

Page 302

by Johann Wolfgang von Goethe


  22

  If, on the other hand, we turn the open eye towards the side of a room, and consider the visionary image in relation to other objects, we shall always see it larger in proportion to the distance of the surface on which it is thrown. This is easily explained by the laws of perspective, according to which a small object near covers a great one at a distance.

  23

  The duration of these visionary impressions varies with the powers or structure of the eye in different individuals, just as the time necessary for the recovery of the tone of the retina varies in passing from brightness to darkness (10): it can be measured by minutes and seconds, indeed much more exactly than it could formerly have been by causing a lighted linstock to revolve rapidly, so as to appear a circle. — Note B.

  24

  But the force with which an impinging light impresses the eye is especially worthy of attention. The image of the sun lasts longest; other objects, of various degrees of brightness, leave the traces of their appearance on the eye for a proportionate time.

  25

  These images disappear by degrees, and diminish at once in distinctness and in size.

  26

  They are reduced from the contour inwards, and the impression on some persons has been that in square images the angles become gradually blunted till at last a diminished round image floats before the eye.

  27

  Such an image, when its impression is no more observable, can, immediately after, be again revived on the retina by opening and shutting the eye, thus alternately exciting and resting it.

  Images may remain on the retina in morbid affections of the eye for fourteen, seventeen minutes, or even longer. This indicates extreme weakness of the organ, its inability to recover itself; while visions of persons or things which are the objects of love or aversion indicate the connexion between sense and thought.

  29

  If, while the image of the window-bars before mentioned lasts, we look upon a light grey surface, the cross will then appear light and the panes dark. In the first case (20) the image was like the original picture, so that the visionary impression also could continue unchanged; but in the present instance our attention is excited by a contrary effect being produced. Various examples have been given by observers of nature.

  30

  The scientific men who made observations in the Cordilleras saw a bright appearance round the shadows of their heads on some clouds. This example is a case in point; for, while they fixed their eyes on the dark shadow, and at the same time moved from the spot, the compensatory light image appeared to float round the real dark one. If we look at a black disk on a light grey surface, we shall presently, by changing the direction of the eyes in the slightest degree, see a bright halo floating round the dark circle.

  A similar circumstance happened to myself: for while, as I sat in the open air, I was talking to a man who stood at a little distance from me relieved on a grey sky, it appeared to me, as I slightly altered the direction of my eyes, after having for some time looked fixedly at him, that his head was encircled with a dazzling light.

  In the same way probably might be explained the circumstance that persons crossing dewy meadows at sunrise see a brightness round each other’s heads; the brightness in this case may be also iridescent, as the phenomena of refraction come into the account. Thus again it has been asserted that the shadows of a balloon thrown on clouds were bordered with bright and somewhat variegated circles.

  Beccaria made use of a paper kite in some experiments on electricity. Round this kite appeared a small shining cloud varying in size; the same brightness was even observed round part of the string. Sometimes it disappeared, and if the kite moved faster the light appeared to float to and fro for a few moments on the place before occupied. This appearance, which could not be explained by those who observed it at the time, was the image which the eye retained of the kite relieved as a dark mass on a bright sky; that image being changed into a light mass on a comparatively dark background.

  In optical and especially in chromatic experiments, where the observer has to do with bright lights whether colourless or coloured, great care should be taken that the spectrum which the eye retains in consequence of a previous observation does not mix with the succeeding one, and thus affect the distinctness and purity of the impression.

  31

  These appearances have been explained as follows: That portion of the retina on which the dark cross (29) was impressed is to be considered in a state of repose and susceptibility. On this portion therefore the moderately light surface acted in a more lively manner than on the rest of the retina, which had just been impressed with the light through the panes, and which, having thus been excited by a much stronger brightness, could only view the grey surface as a dark.

  32

  This mode of explanation appears sufficient for the cases in question, but, in the consideration of phenomena hereafter to be adduced, we are forced to trace the effects to higher sources.

  33

  The eye after sleep exhibits its vital elasticity more especially by its tendency to alternate its impressions, which in the simplest form change from dark to light, and from light to dark. The eye cannot for a moment remain in a particular state determined by the object it looks upon. On the contrary, it is forced to a sort of opposition, which, in contrasting extreme with extreme, intermediate degree with intermediate degree, at the same time combines these opposite impressions, and thus ever tends to a whole, whether the impressions are successive, or simultaneous and confined to one image.

  34

  Perhaps the peculiarly grateful sensation which we experience in looking at the skillfully treated chiaroscuro of colourless pictures and similar works of art arises chiefly from the simultaneous impression of a whole, which by the organ itself is sought, rather than arrived at, in succession, and which, whatever may be the result, can never be arrested.

  Main contents table link

  III. Grey Surfaces and Objects.

  35

  A moderate light is essential to many chromatic experiments. This can be presently obtained by surfaces more or less grey, and thus we have at once to make ourselves acquainted with this simplest kind of middle tint, with regard to which it is hardly necessary to observe, that in many cases a white surface in shadow, or in a low light, may be considered equivalent to a grey.

  36

  Since a grey surface is intermediate between brightness and darkness, it admits of our illustrating a phenomenon before described (29) by an easy experiment.

  37

  Let a black object be held before a grey surface, and let the spectator, after looking steadfastly at it, keep his eyes unmoved while it is taken away: the space it occupied appears much lighter. Let a white object be held up in the same manner: on taking it away the space it occupied will appear much darker than the rest of the surface. Let the spectator in both cases turn his eyes this way and that on the surface, the visionary images will move in like manner.

  38

  A grey object on a black ground appears much brighter than the same object on a white ground. If both comparisons are seen together the spectator can hardly persuade himself that the two greys are identical. We believe this again to be a proof of the great excitability of the retina, and of the silent resistance which every vital principle is forced to exhibit when any definite or immutable state is presented to it. Thus inspiration already presupposes expiration; thus every systole its diastole. It is the universal formula of life which manifests itself in this as in all other cases. When darkness is presented to the eye it demands brightness, and vice versa: it shows its vital energy, its fitness to receive the impression of the object, precisely by spontaneously tending to an opposite state.

  Main contents table link

  IV. Dazzling Colourless Objects.

  39

  If we look at a dazzling, altogether colourless object, it makes a strong lasting impression, and its after-vision is accompanied by an ap
pearance of colour.

  40

  Let a room be made as dark as possible; let there be a circular opening in the window-shutter about three inches in diameter, which may be closed or not at pleasure. The sun being suffered to shine through this on a white surface, let the spectator from some little distance fix his eyes on the bright circle thus admitted. The hole being then closed, let him look towards the darkest part of the room; a circular image will now be seen to float before him. The middle of this circle will appear bright, colourless, or somewhat yellow, but the border will at the same moment appear red.

  After a time this red, increasing towards the centre, covers the whole circle, and at last the bright central point. No sooner, however, is the whole circle red than the edge begins to be blue, and the blue gradually encroaches inwards on the red. When the whole is blue the edge becomes dark and colourless. This darker edge again slowly encroaches on the blue till the whole circle appears colourless. The image then becomes gradually fainter, and at the same time diminishes in size. Here again we see how the retina recovers itself by a succession of vibrations after the powerful external impression it received. (25, 26.)

  41

  By several repetitions similar in result, I found the comparative duration of these appearances in my own case to be as follows: —

  I looked on the bright circle five seconds, and then, having closed the aperture, saw the coloured visionary circle floating before me. After thirteen seconds it was altogether red; twenty-nine seconds next elapsed till the whole was blue, and forty-eight seconds till it appeared colourless. By shutting and opening the eye I constantly revived the image, so that it did not quite disappear till seven minutes had elapsed.

  Future observers may find these periods shorter or longer as their eyes may be stronger or weaker (23), but it would be very remarkable if, notwithstanding such variations, a corresponding proportion as to relative duration should be found to exist.

  42

  But this remarkable phenomenon no sooner excites our attention than we observe a new modification of it. If we receive the impression of the bright circle as before, and then look on a light grey surface in a moderately lighted room, an image again floats before us; but in this instance a dark one: by degrees it is encircled by a green border that gradually spreads inwards over the whole circle, as the red did in the former instance. As soon as this has taken place a dingy yellow appears, and, filling the space as the blue did before, is finally lost in a negative shade.

  43

  These two experiments may be combined by placing a black and a white plane surface next each other in a moderately lighted room, and then looking alternately on one and the other as long as the impression of the light circle lasts: the spectator will then perceive at first a red and green image alternately, and afterwards the other changes. After a little practice the two opposite colours may be perceived at once, by causing the floating image to fall on the junction of the two planes. This can be more conveniently done if the planes are at some distance, for the spectrum then appears larger.

  44

  I happened to be in a forge towards evening at the moment when a glowing mass of iron was placed on the anvil; I had fixed my eyes steadfastly on it, and, turning round, I looked accidentally into an open coal. shed: a large red image now floated before my eyes, and, as I turned them from the dark opening to the light boards of which the shed was constructed, the image appeared half green, half red, according as it had a lighter or darker ground behind it, I did not at that time take notice of the subsequent changes of this appearance.

  45

  The after-vision occasioned by a total dazzling of the retina corresponds with that of a circumscribed bright object. The red colour seen by persons who are dazzled with snow belongs to this class of phenomena, as well as the singularly beautiful green colour which dark objects seem to wear after looking long on white paper in the sun. The details of such experiments may be investigated hereafter by those whose young eyes are capable of enduring such trials further for the sake of science.

  46

  With these examples we may also class the black letters which in the evening light appear red. Perhaps we might insert under the same category the story that drops of blood appeared on the table at which Henry IV. of France had seated himself with the Duc de Guise to play at dice.

  Main contents table link

  V. Coloured Objects.

  47

  We have hitherto seen the physiological colours displayed in the after-vision of colourless bright objects, and also in the after-vision of general colourless brightness; we shall now find analogous appearances if a given colour be presented to the eye: in considering this, all that has been hitherto detailed must be present to our recollection.

  48

  The impression of coloured objects remains in the eye like that of colourless ones, but in this case the energy of the retina, stimulated as it is to produce the opposite colour, will be more apparent.

  49

  Let a small piece of bright-coloured paper or silk stuff be held before a moderately lighted white surface; let the observer look steadfastly on the small coloured object, and let it be taken away after a time while his eyes remain unmoved; the spectrum of another colour will then be visible on the white plane. The coloured paper may be also left in its place while the eye is directed to another part of the white plane; the same spectrum will be visible there too, for it arises from an image which now belongs to the eye.

  50

  In order at once to see what colour will be evoked by this contrast, the chromatic circle may be referred to. The colours are here arranged in a general way according to the natural order, and the arrangement will be found to be directly applicable in the present case; for the colours diametrically opposed to each other in this diagram are those which reciprocally evoke each other in the eye. Thus, yellow demands purple; orange, blue; red, green; and vice versa: thus again all intermediate gradations reciprocally evoke each other; the simpler colour demanding the compound, and vice versa. — Note C.

  51

  The cases here under consideration occur oftener than we are aware in ordinary life; indeed, an attentive observer sees these appearances everywhere, while, on the other hand, the uninstructed, like our predecessors, consider them as temporary visual defects, sometimes even as symptoms of disorders in the eye, thus exciting serious apprehensions. A few remarkable instances may here be inserted.

  52

  I had entered an inn towards evening, and, as a well-favoured girl, with a brilliantly fair complexion, black hair, and a scarlet bodice, came into the room, I looked attentively at her as she stood before me at some distance in half shadow. As she presently afterwards turned away, I saw on the white wall, which was now before me, a black face surrounded with a bright light, while the dress of the perfectly distinct figure appeared of a beautiful sea-green.

  53

  Among the materials for optical experiments, there are portraits with colours and shadows exactly opposite to the appearance of nature. The spectator, after having looked at one of these for a time, will see the visionary figure tolerably true to nature. This is conformable to the same principles, and consistent with experience, for, in the former instance, a negress with a white head-dress would have given me a white face surrounded with black. In the case of the painted figures, however, which are commonly small, the parts are not distinguishable by every one in the after-image.

  54

  A phenomenon which has before excited attention among the observers of nature is to be attributed, I am persuaded, to the same cause.

  It has been stated that certain flowers, towards evening in summer, coruscate, become phosphorescent, or emit a momentary light. Some persons have described their observation of this minutely. I had often endeavoured to witness, it myself, and had even resorted to artificial contrivances to produce it.

  On the 19th of June, 1799, late in the evening, when the twilight was deepening into a clear nig
ht, as I was walking up and down the garden with a friend, we very distinctly observed a flame-like appearance near the oriental poppy, the flowers of which are remarkable for their powerful red colour. We approached the place and looked attentively at the flowers, but could perceive nothing further, till at last, by passing and repassing repeatedly, while we looked sideways on them, we succeeded in renewing the appearance as often as we pleased. It proved to be a physiological phenomenon, such as others we have described, and the apparent coruscation was nothing but the spectrum of the flower in the compensatory blue-green colour.

  In looking directly at a flower the image is not produced, but it appears immediately as the direction of the eye is altered. Again, by looking sideways on the object, a double image is seen for a moment, for the spectrum then appears near and on the real object.

  The twilight accounts for the eye being in a perfect state of repose, and thus very susceptible, and the colour of the poppy is sufficiently powerful in the summer twilight of the longest days to act with full effect and produce a compensatory image. I have no doubt these appearances might be reduced to experiment, and the same effect produced by pieces of coloured paper. Those who wish to take the most effectual means for observing the appearance in nature — suppose in a garden — should fix the eyes on the bright flowers selected for the purpose, and, immediately after, look on the gravel path. This will be seen studded with spots of the opposite colour. The experiment is practicable on a cloudy day, and even in the brightest sunshine, for the sun-light, by enhancing the brilliancy of the flower, renders it fit to produce the compensatory colour sufficiently distinct to be perceptible even in a bright light. Thus, peonies produce beautiful green, marigolds vivid blue spectra.

  55

  As the opposite colour is produced by a constant law in experiments with coloured objects on portions of the retina, so the same effect takes place when the whole retina is impressed with a single colour. We may convince ourselves of this by means of coloured glasses. If we look long through a blue pane of glass, everything will afterwards appear in sunshine to the naked eye, even if the sky is grey and the scene colourless. In like manner, in taking off green spectacles, we see all objects in a red light. Every decided colour does a certain violence to the eye, and forces the organ to opposition.

 

‹ Prev