Works of Johann Wolfgang von Goethe
Page 303
56
We have hitherto seen the opposite colours producing each other successively on the retina: it now remains to show by experiment that the same effects can exist simultaneously. If a coloured object impinges on one part of the retina, the remaining portion at the same moment has a tendency to produce the compensatory colour. To pursue a former experiment, if we look on a yellow piece of paper placed on a white surface, the remaining part of the organ has already a tendency to produce a purple hue on the colourless surface: in this case the small portion of yellow is not powerful enough to produce this appearance distinctly, but, if a white paper is placed on a yellow wall, we shall see the white tinged with a purple hue.
57
Although this experiment may be made with any colours, yet red and green are particularly recommended for it, because these colours seem powerfully to evoke each other. Numerous instances occur in daily experience. If a green paper is seen through striped or flowered muslin, the stripes or flowers will appear reddish. A grey building seen through green pallisades appears in like manner reddish. A modification of this tint in the agitated sea is also a compensatory colour: the light side of the waves appears green in its own colour, and the shadowed side is tinged with the opposite hue. The different direction of the waves with reference to the eye produces the same effect. Objects seen through an opening in a red or green curtain appear to wear the opposite hue. These appearances will present themselves to the attentive observer on all occasions, even to an unpleasant degree.
58
Having made ourselves acquainted with the simultaneous exhibition of these effects in direct cases, we shall find that we can also observe Them by indirect means. If we place a piece of paper of a bright orange colour on the white surface, we shall, after looking intently at .it, scarcely perceive the compensatory colour on the rest of the surface: but when we take the orange paper away, and when the blue spectrum appears in its place, immediately as this spectrum becomes fully apparent, the rest of the surface will be overspread, as if by a flash, with a reddish-yellow light, thus exhibiting to the spectator in a lively manner the productive energy of the organ, in constant conformity with the same law.
59
As the compensatory colours easily appear, where they do not exist in nature, near and after the original opposite ones, so they are rendered more intense where they happen to mix with a similar real hue. In a court which was paved with grey limestone flags, between which grass had grown, the grass appeared of an extremely beautiful green when the evening clouds threw a scarcely perceptible reddish light on the pavement. In an opposite case we find, in walking through meadows, where we see scarcely anything but green, the stems of trees and the roads often gleam with a reddish hue. This tone is not uncommon in the works of landscape painters, especially those who practice in water-colours: they probably see it in nature, and thus, unconsciously imitating it, their colouring is criticised as unnatural.
60
These phenomena are of the greatest importance, since they direct our attention to the laws of vision, and are a necessary preparation for future observations on colours. They show that the eye especially demands completeness, and seeks to eke out the colorific circle in itself. The purple or violet colour suggested by yellow contains red and blue; orange, which responds to blue, is composed of yellow and red; green, uniting blue and yellow, demands red; and so through all gradations of the most complicated combinations. That we are compelled in this case to assume three leading colours has been already remarked by other observers.
61
When in this completeness the elements of which it is composed are still appreciable by the eye, the result is justly called harmony. We shall subsequently endeavour to show how the theory of the harmony of colours may be deduced from these phenomena, and bow, simply through these qualities, colours may be capable of being applied to aesthetic purposes. This will be shown when we have gone through the whole circle of our observations, returning to the point from which we started.
Main contents table link
VI. Coloured Shadows.
62
Before, however, we proceed further, we have yet to observe some very remarkable cases of the vivacity with which the suggested colours appear in the neighbourhood of others: we allude to coloured shadows. To arrive at these we first turn our attention to shadows that are colourless or negative.
63
A shadow cast by the sun, in its full brightness, on a white surface, gives us no impression of colour; it appears black, or, if a contrary light (here assumed to differ only in degree) can act upon it, it is only weaker, half-lighted, grey.
64
Two conditions are necessary for the existence of coloured shadows: first, that the principal light tinge the white surface with some hue; secondly, that a contrary light illumine to a certain extent the cast shadow.
65
Let a short, lighted candle be placed at twilight on a sheet of white paper. Between it and the declining daylight let a pencil be placed upright, so that its shadow thrown by the candle may be lighted, but not overcome, by the weak daylight: the shadow will appear of the most beautiful blue.
66
That this shadow is blue is immediately evident; but we can only persuade ourselves by some attention that the white paper acts as a reddish yellow, by means of which the complemental blue is excited in the eye. — Note D.
67
In all coloured shadows, therefore, we must presuppose a colour excited or suggested by the hue of the surface on which the shadow is thrown. This may be easily found to be the case by attentive consideration, but we may convince ourselves at once by the following experiment.
68
Place two candles at night opposite each other on a white surface; hold a thin rod between them upright, so that two shadows be cast by it; take a coloured glass and hold it before one of the lights, so that the white paper appear coloured; at the same moment the shadow cast by the coloured light and slightly illumined by the colourless one will exhibit the complemental hue.
69
An ‘important consideration suggests itself here, to which we shall frequently have occasion to return. Colour itself is a degree of darkness; hence Kircher is perfectly right in calling it lumen opacaturn. As it is allied to shadow, so it combines readily with it; it appears to us readily in and by means of shadow the moment a suggesting cause presents itself. We could not refrain from adverting at once to a fact which we propose to trace and develop hereafter. — Note E.
70
Select the moment in twilight when the light of the sky is still powerful enough to cast a shadow which cannot be entirely effaced by the light of a candle. The candle may be so placed that a double shadow shall be visible, one from the candle towards the daylight, and another from the daylight towards the candle. If the former is blue the latter will appear orange-yellow: this orange-yellow is in fact, however, only the yellow-red light of the candle diffused over the whole paper, and which becomes visible in shadow.
71
This is best exemplified by the former experiment with two candles and coloured glasses. The surprising readiness with which shadow assumes a colour will again invite our attention in the further consideration of reflections and elsewhere.
72
Thus the phenomena of coloured shadows may be traced to their cause without difficulty. Henceforth let any one who sees an instance of the kind observe only with what hue the light surface on which they are thrown is tinged. Nay, the colour of the shadow may be considered as a chromatoscope of the illumined surface, for the spectator may always assume the colour of the light to be the opposite of that of the shadow, and by an attentive examination may ascertain this to be the fact in every instance.
73
These appearances have been a source of great perplexity to former observers: for, as they were remarked chiefly in the open air, where they commonly appeared blue, they were attributed to a certain inherent blue or blue colou
ring quality in the air. The inquirer can, however, convince himself, by the experiment with the candle in a room, that no kind of blue light or reflection is necessary to produce the effect in question. The experiment may be made on a cloudy day with white curtains drawn before the light, and in a room where no trace of blue exists, and the blue shadow will be only so much the more beautiful.
74
De Saussure, in the description of his ascent of Mont Blanc, says, “A second remark, which may not be uninteresting, relates to the colour of the shadows. These, notwithstanding the most attentive observation, we never found dark blue, although this had been frequently the case in the plain. On the contrary, in fifty-nine instances we saw them once yellowish, six times pale bluish, eighteen times colourless or black, and thirty-four times pale violet. Some natural philosophers suppose that these colours arise from accidental vapours diffused in the air, which communicate their own hues to the shadows; not that the colours of the shadows are occasioned by the reflection of any given sky colour or interposition of any given air colour: the above observations seem to favour this opinion. “The instances given by De Saussure may be now explained and classed with analogous examples without difficulty.
At a great elevation the sky was generally free from vapours, the sun shone in full force on the snow, so that it appeared perfectly white to the eye: in this case they saw the shadows quite colourless. If the air was charged, with a certain degree of vapour, in consequence of which the light snow would assume a yellowish tone, the shadows were violet-coloured, and this effect, it appears, occurred oftenest. They saw also bluish shadows, but this happened less frequently; and that the blue and violet were pale was owing to the surrounding brightness, by which the strength of the shadows was mitigated. Once only they saw the shadow yellowish: in this case, as we have already seen (70), the shadow is cast by a colourless light, and slightly illumined by a coloured one.
75
In travelling over the Harz in winter, I happened to descend from the Brocken towards evening; the wide slopes extending above and below me, the heath, every insulated tree and projecting rock, and all masses of both, were covered with snow or hoar-frost. The sun was sinking towards the Oder ponds. During the day, owing to the yellowish hue of the snow, shadows tending to violet had already been observable; these might now be pronounced to be decidedly blue, as the illumined parts exhibited a yellow deepening to orange.
But as the sun at last was about to set, and its rays, greatly mitigated by the thicker vapours, began to diffuse a most beautiful red colour over the whole scene around me, the shadow colour changed to a green, in lightness to be compared to a sea-green, in beauty to the green of the emerald. The appearance became more and more vivid: one might have imagined oneself in a fairy world, for every object had clothed itself in the two vivid and so beautifully harmonising colours, till at last, as the sun went down, the magnificent spectacle was lost in a grey twilight, and by degrees in a clear moon and starlight night.
76
One of the most beautiful instances of coloured shadows may be observed during the full moon. The candle-light and moon-light may be contrived to be exactly equal in force; both shadows may be exhibited with equal strength and clearness, so that both colours balance each other perfectly. A white surface being placed opposite the full moon, and the candle being placed a little on one side at a due distance, an opaque body is held before the white plane. A double shadow will then be seen: that cast by the moon and illumined by the candle-light will be a powerful red-yellow; and contrariwise, that cast by the candle and illumined by the moon will appear of the most beautiful blue. The shadow, composed of the union of the two shadows, where they cross each other, is black. The yellow shadow (74) cannot perhaps be exhibited in a more striking manlier. The immediate vicinity of the blue and the interposing black shadow make the appearance the more agreeable. It will even be found, if the eye dwells long on these colours, that they mutually evoke and enhance each other, the increasing red in the one still producing its contrast, viz. a kind of sea-green.
77
We are here led to remark that in this, and in all cases, a moment or two may perhaps be necessary to produce the complemental colour. The retina must be first thoroughly impressed with the demanding hue before the responding one can be distinctly observable.
78
When divers are under water, and the sunlight shines into the diving-bell, everything is seen in a red light (the cause of which will be explained hereafter), while the shadows appear green. The very same phenomenon which I observed on a high mountain (75) is presented to others in the depths of the sea, and thus Nature throughout is in harmony with herself.
79
Some observations and experiments which equally illustrate what has been stated with regard to coloured objects and coloured shadows may be here added. Let a white paper blind be fastened inside the window on a winter evening; in this blind let there be an opening, through which the snow of some neighbouring roof can be seen. Towards dusk let a candle be brought into the room; the snow seen through the opening will then appear perfectly blue, because the paper is tinged with warm yellow by the candle-light. The snow seen through the aperture is here equivalent to a shadow illumined by a contrary light (76), and may also represent a grey disk on a coloured surface (56).
80
Another very interesting experiment may conclude these examples. If we take a piece of green glass of some thickness, and hold it so that the window bars be reflected in it, they will appear double owing to the thickness of the glass. The image which is reflected from the under surface of the glass will be green; the image which is reflected from the upper surface, and which should be colourless, will appear red. The experiment may be very satisfactorily made by pouring water into a vessel, the inner surface of which can act as a mirror; for both reflections may first be seen colourless while the water is pure, and then by tinging it, they will exhibit two opposite hues.
Main contents table link
VII. Faint Lights.
81
Light, in its full force, appears purely white, and it gives this impression also in its highest degree of dazzling splendour. Light, which is not so powerful, can also, under various conditions, remain colourless. Several naturalists and mathematicians have endeavoured to measure its degrees — Lambert, Bouguer, Rumfort.
82
Yet an appearance of colour presently manifests itself in fainter lights, for in their relation to absolute light they resemble the coloured spectra of dazzling objects (39).
83
A light of any kind becomes weaker, either when its own force, from Whatever cause, is diminished, or when the eye is so circumstanced or placed, that it cannot be sufficiently impressed by the action of the light. Those appearances which may be called objective, come under the head of physical colours. We will only advert here to the transition from white to red heat in glowing iron. We may also observe that the flames of lights at night appear redder in proportion to their distance from the eye. — Note F.
84
Candle-light at night acts as yellow when seen near; we can perceive this by the effect it produces on other colours. At night a pale yellow is hardly to be distinguished from white; blue approaches to green, and rose-colour to orange.
85
Candle-light at twilight acts powerfully as a yellow light: this is best proved by the purple blue shadows which, under these circumstances, are evoked by the eye.
86
The retina may be so excited by a strong light that it cannot perceive fainter lights (11): if it perceive these they appear coloured: hence candle-light by day appears reddish, thus resembling, in its relation to fuller light, the spectrum of a dazzling object; nay, if at night we look long and intently on the flame of a light, it appears to increase in redness.
87
There are faint lights which, notwithstanding their moderate lustre, give an impression of a white, or, at the most, of a light yellow appeara
nce on the retina; such as the moon in its full splendour. Rotten wood has even a kind of bluish light. All this will hereafter be the subject of further remarks.
88
If at night we place a light near a white or greyish wall .so that the surface be illumined from this central point to some extent, we find, on observing the spreading light at some distance, that the boundary of the illumined surface appears to be surrounded with a yellow circle, which on the outside tends to red-yellow. We thus observe that when light direct or reflected does not act in its full force, it gives an impression of yellow, of reddish, and lastly even of red. Here we find the transition to halos which we are accustomed to see in some mode or other round luminous points.
Main contents table link
VIII. Subjective Halos.
89
Halos may be divided into subjective and objective. The latter will be considered under the physical colours; the first only belong here. These are distinguished from the objective halos by the circumstance of their vanishing when the point of light which produces them on the retina is covered.
90
We have before noticed the impression of a luminous object on the retina, and seen that it appears larger: but the effect is not at an end here, it is not confined to the impression of the image; an expansive action also takes place, spreading from the centre.
91
That a nimbus of this kind is produced round the luminous image in the eye may be best seen in a dark room, if we look towards a moderately large opening in the window-shutter. In this case the bright image is surrounded by a circular misty light. I saw such a halo bounded by a yellow and yellow-red circle on opening my eyes at dawn, on an occasion when I passed several nights in a bed-carriage.