The Walking Whales

Home > Other > The Walking Whales > Page 33
The Walking Whales Page 33

by J G M Hans Thewissen


  http://www.icr.org/article/when-whale-whale/.

  6. Different scientists use the word whale differently. In this book, for fossil

  species, whale and cetacean are used interchangeably. As such, whales includes fossil dolphins and porpoises.

  7. J. G. M. Thewissen and S. T. Hussain, 1993, “Origin of Underwater Hear-

  ing in Whales,” Nature 361 (1993): 444–45.

  chapter 2. fish, mammal, or dinosaur?

  1. Aristotle, Historia Animalium, Book III, http://web.archive.org/

  web/20110215182616/http://etext.lib.virginia.edu/etcbin/toccer-new2?id=

  213

  214    |    Notes

  AriHian.xml&images=images/modeng&data=/texts/english/modeng/parsed&tag

  =public&part=3&division=div2.

  2. There are some cetaceans that pertain to the Odontoceti that have barely

  any teeth. A male narwhal has only one, a tusk longer than the animal, whereas

  a female narwhal has no teeth that break through the gums at all, and the same

  is true for many female beaked whales. Alternatively, some whales with teeth

  are not toothed whales, such as the whales that lived between 50 and 37 million

  years ago. The use of the phrase “toothed whales” here means odontocete.

  3. D. W. Rice,  Marine Mammals of the World, Systematics and Distribution,

  Special Publication Number 4 (1998), Society for Marine Mammalogy.

  4. The first part of the Latin here means “a penis that enters the female, and

  breast that gives milk.” Indeed, feeding its young with mother’s milk is the criti-

  cal feature for a mammal, but a male copulatory organ is not; a penis is also

  present in crocodiles and turtles, for instance. The last part of the quote was

  translated for me by Dr. Graham Burnett as “from (the authority of) the law of

  nature, by right and by merit,” and surely exemplifies another of Melville’s mis-

  chievous moments in writing this book.

  5.  H.  Melville,  Moby-Dick; or, The Whale  (New  York:  Random  House,

  1992), 193–94.

  6. C. Darwin,  The Origin of Species by Means of Natural Selection or the

  Preservation of Favoured Races in the Struggle for Life (Harmondsworth: Pen-

  guin, 1968), 215.

  7. Quoted in S. J. Gould, “Hooking Leviathan by Its Past,”  Natural History,

  May 1994: 8–15.

  8. R. Harlan, “Notice of the Fossil Bones Found in the Tertiary Formation of

  the  State  of  Louisiana,”  Transactions of the American Philosophical Society,

  N. S.  4 (1834): 397–403, pl. 20.

  9. R. Owen, “Observations on the  Basilosaurus of Dr. Harlan ( Zeuglodon

  cetoides,  Owen),”  Transactions of the Geological Society of London, Ser. 2, No.

  6 (1839): 69–79, pl. 7–9. R. Owen, “Observations on the Teeth of the  Zeuglo-

  don, Basilosaurus  of  Dr.  Harlan,”  Proceedings of the Geological Society of

  London 3 (1839): 24–28.

  10. International Code for Zoological Nomenclature—see http://www.nhm.

  ac.uk/hosted-sites/iczn/code/.

  11. J. G. Wood, “The Trail of the Sea-Serpent,”  Atlantic Monthly 53 (June

  1884): 799–814.

  12.  D. E.  Jones, “Doctor  Koch and  his ‘Immense Antediluvian  Monsters,’”

  Alabama Heritage 12 (Spring 1989): 2–19,  http://www.alabamaheritage.com/

  vault/monsters.htm.

  13. Quoted in J. D. Dana, “On Dr. Koch’s Evidence with Regard to the Con-

  temporaneity  of  Man  and  the  Mastodon  in  Missouri,  American Journal of

  Science and Arts 9 (35, 1875): 335–46.

  14. J. Müller,  U˝ ber die fossilen Reste der Zeuglodonten von Nordamerica, mit

  Rücksicht auf die europäischen Reste dieser Familie (Berlin: G. Reimer, 1849).

  15.  Dallas Gazette of Cahawba, Alabama, March 30, 1855, quoted in note 12.

  16. P. D. Gingerich, B. H. Smith, and E. L. Simons, “Hind Limbs of Eocene

  Basilosaurus: Evidence of Feet in Whales,”  Science 229 (1990): 154–57.

  Notes    |    215

  17. J. Gatesy and M.A. O’Leary, “Deciphering Whale Origins with Molecules

  and Fossils,”  Trends in Ecology & Evolution 16 (2001): 562–70.

  18. Groups of related species are included in one genus, and groups of related

  genera are included in one family. The most common levels of hierarchy in zoo-

  logical  nomenclature  are:  species,  genus,  family,  superfamily,  suborder,  order,

  class, and phylum. Cetacea (cetaceans in English) is the name of an order in the

  class Mammalia (mammals in English). See also page 14.

  19.  Basilosaurines  include  Basilosaurus, Chrysocetus, Cynthiacetus,   and

  Basilotritus  and  are  found  in  Europe,  Africa,  and  the  Americas.  Among  the

  dorudontines,  Dorudon, Saghacetus, Masracetus,   and  Stromerius  are  known

  from  Egypt  only;  Zygorhiza  lived  in  North  America,  Antarctica,  and  New

  Zealand; and  Ocucajea and  Supayacetus are known from Peru only.

  20. M. D. Uhen, “Form, Function, and Anatomy of  Dorudon atrox (Mam-

  malia,  Cetacea): An Archaeocete  from  the  Middle  to  Late  Eocene  of  Egypt,”

  University of Michigan Papers on Paleontology 34 (2004): 1–222. This work

  comprehensively treats one of the best-known basilosaurids, and covers many

  of the topics discussed here. Citations of this and other papers of ubiquitous

  importance that were already cited are not repeated.

  21. The third molar in the upper and lower jaw is the wisdom tooth. That

  tooth is present in some people, but never erupts in others.

  22.  R.  Kellogg,  A Review of the Archaeoceti  (Washington,  DC:  Carnegie

  Institute of Washington, 1936).

  23.  C. C.  Swift  and  L. G.  Barnes, “Stomach  Contents  of  Basilosaurus Cet-

  oides: Implications for the Evolution of Cetacean Feeding Behavior, and Evi-

  dence  for  Vertebrate  Fauna  and  Epicontinental  Eocene  Seas,”  Abstracts of

  Papers, Sixth North American Paleontological Convention  (Washington,  DC,

  1996).

  24. J. M. Fahlke, K. A. Bastl, G. Semprebon, and P. D. Gingerich, “Paleoecol-

  ogy  of  Archaeocete  Whales  throughout  the  Eocene:  Dietary  Adaptations

  Revealed by Microwear Analysis,”  Palaeogeography, Palaeoclimatology, Palae-

  oecology 386 (2013): 690–701. doi:10.1016/j.palaeo.2013.06.032.

  25. J. M. Fahlke, “Bite Marks Revisited: Evidence for Middle-to-Late Eocene

&nbs
p; Basilosaurus isis Predation on  Dorudon atrox (Both Cetacea, Basilosauridae),”

  Palaeontologia Electronica 15 (2012): 32A.

  26. R. A. Dart, “The Brain of the Zeuglodontidae (Cetacea),”  Proceedings of

  the Zoological Society, London 42 (1923): 615–54.

  27. L. Marino, “Brain Size Evolution,” in  Encyclopedia of Marine Mammals

  (2nd ed.), ed. W. F. Perrin, B. Würsig, and J. G. M. Thewissen (San Diego, CA:

  Academic Press, 2009), 149–52.

  28. T. Edinger, “Evolution of the Horse Brain,”  Geological Society of Amer-

  ica, Memoir 25 (1948).

  29. L. Marino, M. D. Uhen, B. Frohlich, J. M. Aldag, C. Blane, D. Bohaska,

  and F. C. Whitmore, Jr., “Endocranial Volume of Mid-Late Eocene Archaeocetes

  (Order: Cetacea) Revealed by Computed Tomography: Implications for Ceta-

  cean Brain Evolution,”  Journal of Mammalian Evolution 7 (2000): 81–94. L.

  Marino, “What Can Dolphins Tell Us about Primate Evolution?”  Evolutionary

  Anthropology 5 (1997, no. 3): 81–85.

  216    |    Notes

  30. J. G. M. Thewissen, J. George, C. Rosa, and T. Kishida, “Olfaction and

  Brain Size in the Bowhead Whale,”  Marine Mammal Science 27 (2011): 282–94.

  31. H. J. Jerison,  Evolution of the Brain and Intelligence (New York: Aca-

  demic  Press,  1973).  L.  Marino,  D. W.  McShea,  and  M. D.  Uhen, “Origin  and

  Evolution  of  Large  Brains  in  Toothed  Whales,”  Anatomical Record  281A

  (2004):  1247–55.  Encephalization  quotient  is  defined  as  brain-weight-in-

  grams/0.12 body-weight-in-grams0.67.

  32.  Bowhead  whale  08B11  had  a  brain  size  of  2,950  grams  and  weighed

  14,222,000 grams; see note 30.

  33. W. C. Lancaster, “The Middle Ear of the Archaeoceti,”  Journal of Verte-

  brate Paleontology 10 (1990): 117–27.

  34. V. de Buffrénil, A. de Ricqlès, C. E. Ray, and D. P. Domning, “Bone Histol-

  ogy of the Ribs of the Archaeocetes (Mammalia, Cetacea),”  Journal of Verte-

  brate Paleontology 10 (1990): 455–66.

  35.  M.  Taylor, “Stone,  Bone,  or  Blubber?  Buoyancy  Control  Strategies  in

  Aquatic Tetrapods,” in  Mechanics and Physiology of Animal Swimming, ed. L.

  Maddock,  Q.  Bone,  and  J.  M. V.  Rayner  (Cambridge:  Cambridge  University

  Press, 1994), 205–29.

  36. S. I. Madar, “Structural Adaptations of Early Archeocete Long Bones,” in

  The Emergence of Whales, ed. J. G. M. Thewissen (New York: Plenum Press,

  1998), 353–78.

  37. M. M. Moran, S. Bajpai, J. C. George, R. Suydam, S. Usip, and J. G. M.

  Thewissen, “Intervertebral  and  Epiphyseal  Fusion  in  the  Postnatal  Ontogeny

  of  Cetaceans  and  Terrestrial  Mammals,”  Journal of Mammalian Evolution

  (2014),  doi:10.1007/s10914–014–9256–7.  M.  D.  Uhen,  “New  Material  of

  Natchitochia jonesi  and  a  Comparison  of  the  Innominata  and  Locomotor

  Capabilities  of  Protocetidae,”  Marine Mammal Science  (2014),  doi:10.1111

  /mms.12100.

  38. In anatomical language, the bony pelvis includes the unpaired sacrum

  plus the paired innominate. The innominate is also called the os coxae and is

  composed of ilium, ischium, and pubis. In this book, the more common English-

  language use of  pelvis is followed, as a synonym of  innominate.

  39. E. A. Buchholtz, “Implications of Vertebral Morphology for Locomotor

  Evolution in Early Cetacea,” in  The Emergence of Whales, ed. J. G. M. Thewis-

  sen (New York: Plenum Press, 1998), 325–52.

  40. F. E. Fish, “Biomechanical Perspective on the Origin of Cetacean Flukes,”

  in  The Emergence of Whales, ed. J. G. M. Thewissen (New York: Plenum Press,

  1998), 303–24.

  41.  P. W.  Webb  and  R. W.  Blake,  “Swimming,”  in  Functional Vertebrate

  Morphology, ed. M. Hildebrand, D. M. Bramble, K. F. Liem, and D. B. Wake

  (Cambridge, MA: Harvard University Press, 1985), 110–28.

  42. H. Benke, “Investigations on the Osteology and the Functional Morphol-

  ogy of the Flipper of Whales and Dolphins (Cetacea),”  Investigations on Cetacea

  24 (1993): 9–252.

  43. L. N. Cooper, S. D. Dawson, J. S. Reidenberg, and A. Berta, “Neuromus-

  cular Anatomy and Evolution of the Cetacean Forelimb,”  Anatomical Record

  290 (2007): 1121–37.

  Notes    |    217

  44. J. G. M. Thewissen, L. N. Cooper, J. C. George, and S. Bajpai, “From Land

  to Water: The Origin of Whales, Dolphins, and Porpoises,”  Evolution: Educa-

  tion and Outreach 2 (2009): 272–88.

  45. L. Bejder and B. K. Hall, “Limbs in Whales and Limblessness in Other

  Vertebrates: Mechanisms of Evolutionary and Developmental Transformation

  and Loss,”  Evolution & Development 4 (2002): 445–58.

  46. M. D. Struthers, “The Bones, Articulations, and Muscles of the Rudimen-

  tary Hind-Limb of the Greenland Right Whale ( Balaena mysticetus),”  Journal of

  Anatomy and Physiology 15 (1881): 142–321. M. D. Struthers, 1893, “On the

  Rudimentary Hind Limb of the Great Fin-Whale ( Balaenoptera musculus) in

  Comparison  with  Those  of  the  Humpback  Whale  and  the  Greenland  Right

  Whale,”  Journal of Anatomy and Physiology 27 (1893): 291–335.

  47.  F. A.  Lucas,  “The  Pelvic  Girdle  of  Zeuglodon,  Basilosaurus cetoides

  (Owen),  with  Notes  on  Other  Portions  of  the  Skeleton,”  Proceedings of the

  United States National Museum 23 (1900): 327–31.

  48.  P. D.  Gingerich,  “Marine  Mammals  (Cetacea  and  Sirenia)  from  the

  Eocene of Gebel Mokattam and Fayum, Egypt: Stratigraphy, Age, and Paleoen-

  vironments,”  University of Michigan Papers on Paleontology 30 (1992): 1–84.

  49.  J.  Zachos,  M.  Pagani,  L.  Sloan,  E.  Thomas,  and  K.  Billups, “Trends,

  Rhythms, and Aberrations in Global Climate 65 Ma to Present,”  Science 292

  (2001): 686–93.

  50. A. Haywood,  Creation and Evolution (London: Triangle Books, 1985),

  quoted in note 7.

  chapter 3. a whale with legs

  1. D. P. Domning and V. de Buffrénil, “Hydrostasis in the Sirenia: Quantita-

  tive Data and Functional Interpretations,”  Marine Mammal Science 7 (1991):


  331–68.

  2.  N. A.  Wells,  “Transient  Streams  in  Sand-Poor  Redbeds:  Early-Middle

  Eocene Kuldana Formation of Northern Pakistan,”  Special Publication, Inter-

  national Association for Sedimentology,   6  (1983):  393–403.  A.  Aslan  and

  J. G. M. Thewissen, “Preliminary Evaluation of Paleosols and Implications for

  Interpreting Vertebrate Fossil Assemblages, Kuldana Formation, Northen Paki-

  stan,”  Palaeovertebrata 25 (1996): 261–77.

  3. R. M. West, “Middle  Eocene  Large Mammal Assemblage with Tethyan

  Affinities,  Ganda  Kas  Region,  Pakistan,”  Journal of Paleontology  54  (1980):

  508–33.

  4. P. D. Gingerich and D. E. Russell,  “Pakicetus inachus,  a New Archaeocete

  (Mammalia, Cetacea),”  Contributions from the Museum of Paleontology, Uni-

  versity of Michigan 25 (1981): 235–46. P. D. Gingerich, N. A. Wells, D. E. Rus-

  sell, and S. M. I. Shah, “Origin of Whales in Epicontinental Remnant Seas: New

  Evidence from the Early Eocene of Pakistan,”  Science 220 (1983): 403–406.

  5. For cetaceans,  bulla is a synonym of  tympanic (see chapter 1 and figure 2).

  6.  J. G. M. Thewissen,  S. T.  Hussain,  and  M. Arif, “Fossil  Evidence  for  the

  Origin  of Aquatic  Locomotion  in Archaeocete Whales,”  Science  263  (1994):

  210–12.

  218    |    Notes

  7. S. J. Gould, “Hooking Leviathan by Its Past,”  Natural History, May 1994:

  8–15.

  chapter 4. learning to swim

  1. S. J. Gould, “Hooking Leviathan by Its Past,”  Natural History, May 1994:

  8–15.

  2. A. B. Howell,  Aquatic Mammals: Their Adaptations to Life in the Water

  (Baltimore, MD: C. C. Thomas, 1930).

  3. J. E. King,  Seals of the World (Ithaca, NY: Cornell University Press, 1983).

  4. F. E. Fish, “Function of the Compressed Tail of Surface Swimming Musk-

  rats  ( Ondatra zibethicus),”  Journal of Mammalogy  63  (1982):  591–97.  F. E.

 

‹ Prev